Некоторые свойства электромагнитной волны

Электромагнитные волны представляют собой распространяющееся в пространстве и во времени электромагнитное поле. Электромагнитные волны поперечны – векторы и перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения волны (рис. 46).

Так как векторы , и образуют правовинтовую тройку векторов, то их взаимная ориентация подчиняется правилу:

 

 

Для электромагнитной волны справедливы все формулы, закономерности и соотношения, которые были отмечены ранее для волновых процессов. Поэтому, согласно выражению (105), уравнение синусоидальной плоской электромагнитной волны, распространяющейся вдоль направления , можно записать в виде:

 

Е (r,t)0 cos(w t – kr)

(125)

Н (r,t)0 cos(w t – kr)

 

Волновое уравнение такой электромагнитной волны имеет вид:

 

= υ2 ,

(126)

= υ2 ,

 

где υ - фазовая скорость электромагнитной волны. С помощью уравнений Максвелла было показано, что электромагнитные волны распространяются в веществе с конечной скоростью, определяемой по формуле:

 

. (127)

 

Здесь ε и μ – диэлектрическая и магнитная проницаемости вещества, ε0 и μ0 – электрическая и магнитная постоянные:

ε0 = 8,85419·10–12 Ф/м, μ0 = 1,25664·10–6 Гн/м.

Скорость электромагнитных волн в вакууме (ε = μ = 1):

.

Скорость c распространения электромагнитных волн в вакууме является одной из фундаментальных физических постоянных. Равенство скорости распространения электромагнитных волн в вакууме скорости света в вакууме позволило Максвеллу предположить, что свет имеет электромагнитную природу.

Электромагнитная волна называется монохроматической,если проекции её векторов и на оси прямоугольной системы координат совершают гармонические колебания одинаковой частоты.

В электромагнитной волне происходят взаимные превращения электрического и магнитного полей. Эти процессы идут одновременно, и электрическое и магнитное поля выступают как равноправные «партнеры». Объемная плотность энергии электромагнитного поля в линейной изотропной среде

 

, (128)

 

В электромагнитной волне модули напряженности магнитного поля и напряженности электрического поля в каждой точке пространства связаны соотношением

 

. (129)

 

Из уравнения (129) следует, что

 

, (130)

 

где с –скорость электромагнитных волн в вакууме.

Электромагнитные волны переносят энергию.

Плотностью потока энергии называют энергию, переносимую волной за единицу времени через единицу площади. Вектор плотности потока электромагнитной энергии называется вектором Умова-Пойнтинга . Согласно формуле (112), имеем:

 

= = .

 

Для монохроматической волны групповая и и фазовая υ скорости равны. Подставляя сюда выражения (128) для w и (127) для υ, можно получить:

 

 

Так как векторы и взаимно перпендикулярны и образуют с направлением распространения волны правовинтовую систему, то направление вектора совпадает с направлением переноса энергии, а модуль этого вектора равен ЕН:

 

(131)

 

Единицей плотности потока энергии в СИ является Ватт на квадратный метр (Вт/м2).

Так как интенсивность бегущей электромагнитной волны это физическая величина J, равная модулю среднего значения вектора Умова- Пойнтинга за период его полного колебания, то

:

| υ|, (132)

 

где -фазовая скорость, -среднее значение объемной плотности энергии. Согласно выражению (113), интенсивность волны пропорциональна квадрату амплитуды. Так как , согласно выражению (130), пропорциональна Е02 , то этот вывод справедлив и для электромагнитной волны: интенсивность электромагнитной волны пропорциональна квадрату амплитуды.

 








Дата добавления: 2015-07-18; просмотров: 889;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.