Условием максимума при интерференции.
В тех точках пространства, для которых выполняется условие
∆φ = π, 3π, 5π,…, т.е. (2т +1)π
или (118)
∆r = λ/2, 3λ /2, …, т.е (2т +1)λ /2 , ( т = 0, 1, 2, 3, …)
амплитуда колебаний будет минимальна и выражения (118) называются условием минимума при интерференции.Так как интенсивность волны пропорциональна квадрату амплитуды, то в точках максимума и минимума будут наблюдаться соответственно максимумы или минимумы интенсивности результирующей волны. Таким образом, при интерференции происходит перераспределение интенсивности волн в пространстве: в одних точках волны взаимно усиливают друг друга, в других - взаимно ослабляют. Наблюдающееся распределение интенсивности волн в пространстве называется интерференционной картиной.
Если волны некогерентны, то в данной точке пространства ∆φ ≠const и принимает различные значения от 0 до π, cos∆φ с равной вероятностью
принимает значения от -1 до +1 и А2 = А1 2 + А2 2. Таким образом, при наложении некогерентных волн во всех точках пространства интенсивность результирующей волны будет равна сумме интенсивностей складываемых волн.
Дата добавления: 2015-07-18; просмотров: 689;