Энергия системы зарядов
Пусть имеются заряды q1 и q2, находящиеся на расстоянии r12. Когда заряды удалены друг от друга на бесконечность, они не взаимодействуют. Положим в этом случае их энергию равной нулю. Сближение зарядов можно произвести приближая q1 к q2, либо наоборот. В обоих случаях совершается одинаковая работа. Работа переноса заряда q1 из бесконечности в точку, удаленную от q2 на r12, равна:
, (19)
где - потенциал, создаваемый зарядом q2 в той точке, в которую перемещается заряд q1. Аналогично работа переноса заряда q2 из бесконечности в точку, удаленную от q1 на r12, равна:
, (20)
где - потенциал, создаваемый зарядом q1 в той точке, в которую перемещается заряд q2. Значения работ (19) и (20) одинаковы, и каждое из них выражает энергию системы:
.
Для того чтобы в выражении энергии системы оба заряда входили симметрично, напишем его следующим образом:
. (21)
В случае N зарядов потенциальная энергия системы равна:
, (22)
где - потенциал, создаваемый в той точке, где находится qi, всеми зарядами, кроме i-го.Процесс возникновения на обкладках конденсатора зарядов +q и –q можно представить так, что от одной обкладки последовательно отнимаются порции заряда и перемещаются на другую обкладку. Работа переноса очередной порции равна:
,
где U – напряжение на конденсаторе. Заменяя U через отношение заряда к емкости и переходя к дифференциалам, получим:
.
Интегрируя, получим:
.
Энергию конденсатора можно выразить через величины, характеризующие электрическое поле в зазоре между обкладками. Сделаем это для плоского конденсатора. Подставим в выражение для энергии конденсатора выражения для емкости плоского конденсатора, тогда:
. (23)
Так как , а S·d=V – объем, занимаемый полем, то можно написать:
. (24)
Формула (23) связывает энергию конденсатора с зарядом на его обкладках, формула (24) – с напряженностью поля. Логично поставить вопрос: где же локализована (т.е. сосредоточена) энергия, что является носителем энергии – заряды или поле? В пределах электростатики, изучающей постоянные во времени поля неподвижных зарядов, дать ответ на этот вопрос невозможно. Постоянные поля и обусловившие их заряды не могут существовать обособленно друг от друга. Однако меняющиеся во времени поля могут существовать независимо от возбудивших их зарядов и распространяться в пространстве в виде электромагнитных волн. Опыт показывает, что электромагнитные волны переносят энергию. Следовательно, носителем энергии является поле.
Если поле однородно, заключенная в нем энергия распределяется в пространстве с постоянной плотностью равной энергии поля, деленной на заполняемый полем объем. Следовательно, плотность энергии поля плоского конденсатора:
.
Этой формуле можно придать вид:
,
заменив D (14), получим плотность энергии в диэлектрике:
.
Первое слагаемое совпадает с плотностью энергии поля в вакууме. Второе – представляет собой энергию, затрачиваемую на поляризацию диэлектрика.
Дата добавления: 2015-06-17; просмотров: 1319;