ПОСТОЯННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК
1. Электрический ток, сила и плотность тока
Для возникновения и существования электрического тока необходимо, с одной стороны, наличие свободных носителей тока — заряженных частиц, способных перемещаться упорядоченно, а с другой — наличие электрического поля, энергия которого, каким-то образом восполняясь, расходовалась бы на их упорядоченное движение. За направление тока условно принимают направление движения положительных зарядов.
Количественной мерой электрического тока служит сила тока I скалярная физическая величина, определяемая электрическим зарядом, проходящим через поперечное сечение проводника в единицу времени:
Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным. Для постоянного тока
где Q — электрический заряд, проходящий за время t через поперечное сечение проводника. Единила силы тока — ампер (А).
Физическая величина, определяемая силой тока, проходящего через единицу площади поперечного сечения проводника, перпендикулярного направлению тока, называется плотностью тока:
Выразим силу и плотность тока через скорость ávñ упорядоченного движения зарядов в проводнике. Если концентрация носителей тока равна n и каждый носитель имеет элементарный заряд е (что не обязательно для ионов), то за время dt через поперечное сечение S проводника переносится заряд dQ=ne ávñ S dt. Сила тока а плотность тока
Плотность тока – вектор, ориентированный по направлению тока, т. е. направление вектора j совпадает с направлением упорядоченного движения положительных зарядов. Единица плотности тока — ампер на метр в квадрате (А/м2).
Сила тока сквозь произвольную поверхность S определяется как поток вектора j, т. е.
где dS=ndS (n - единичный вектор нормали к площадке dS, составляющей с вектором j угол a).
2. Сторонние силы. Электродвижущая сила и напряжение
Если в цепи на носители тока действуют только силы электростатического поля, то происходит перемещение носителей (они предполагаются положительными) от точек с большим потенциалом к точкам с меньшим потенциалом. Это приведет к выравниванию потенциалов во всех точках цепи и к исчезновению электрического поля. Поэтому для существования постоянного тока необходимо наличие в цепи устройства, способного создавать и поддерживать разность потенциалов за счет работы сил неэлектростатического происхождения. Такие устройства называютсяисточниками тока. Силы неэлектростатического происхождения, действующие на заряды со стороны источников тока, называютсясторонними.
Природа сторонних сил может быть различной. Например, в гальванических элементах они возникают за счет энергии химических реакций между электродами и электролитами; в генераторе – за счет механической энергии вращения ротора генератора и т. п. Под действием создаваемого поля сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему на концах цепи поддерживается разность потенциалов и в цепи течет постоянный электрический ток.
Сторонние силы совершают работу по перемещению электрических зарядов. Физическая величина, определяемая работой, совершаемой сторонними силами при перемещении единичного положительного заряда, называетсяэлектродвижущей силой (э.д.с.),действующей в цепи:
Эта работа производятся за счет энергии, затрачиваемой в источнике тока, поэтому величину можно также называть электродвижущей силой источника тока, включенного в цепь.
Сторонняя сила Fст, действующая на заряд Q0, может быть выражена как
где Е – напряженность поля сторонних сил. Работа же сторонних сил по перемещению заряда Q0 на замкнутом участке цепи равна
выражение для э. д. с., действующей в цепи:
т. е. э.д.с., действующая в замкнутой цепи, может быть определена как циркуляция вектора напряженности поля сторонних сил. Э.д.с., действующая на участке 1-2, равна
На заряд Q0 помимо сторонних сил действуют также силы электростатического поля Fe=Q0E. Таким образом, результирующая сила, действующая в цепи на заряд Q0, равна
Работа, совершаемая результирующей силой над зарядом Q0 на участке 1-2, равна
Напряжением U на участке 1-2 называется физическая величина, определяемая работой, совершаемой суммарным полем электростатических (кулоновских) и сторонних сил при перемещении единичного положительного заряда на данном участке цепи. Таким образом,
Понятие напряжения является обобщением понятия разности потенциалов: напряжение на концах участка цепи равно разности потенциалов в том случае, если на этом участке не действует Э.д.с., т. е. сторонние силы отсутствуют.
3. Закон Ома. Сопротивление проводников
Немецкий физик Г. Ом (1787-1854) экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т.е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:
где R – электрическое сопротивление проводника.
1 Ом – сопротивление такого проводника, в котором при напряжении 1 В течет постоянный ток 1 А.
Величина называется электрической проводимостью проводника. Единица проводимости – сименс (См): 1 См - проводимость участка электрической цепи сопротивлением 1 Ом.
Сопротивление проводников зависит от его размеров и формы, а также от материала, из которого проводник изготовлен. Для однородного линейного проводника сопротивление R прямо пропорционально его длине l и обратно пропорционально площади его поперечного сечения S:
где r — коэффициент пропорциональности, характеризующий материал проводника и называемыйудельным электрическим сопротивлением. Единица удельного электрического сопротивления — ом×метр (Ом×м). Наименьшим удельным сопротивлением обладают серебро (1,6×10–8 Ом×м) и медь (1,7×10–8 Ом×м). На практике наряду с медными применяются алюминиевые провода. Хотя алюминий и имеет большее, чем медь, удельное сопротивление (2,6×10–8 Ом×м), но зато обладает меньшей плотностью по сравнению с медью.
Закон Ома можно представить в дифференциальной форме.
где величина, обратная удельному сопротивлению,
называетсяудельной электрической проводимостью вещества проводника. Ее единица – сименс на метр (См/м). Учитывая, что U/l = Е - напряженность электрического поля в проводнике, I/S = j - плотность тока, формулу можно записать в виде
Так как в изотропном проводнике носители тока в каждой точке движутся в направлении вектора Е, то направления j и Е совпадают. Поэтому формулу можно записать в виде
Выражение – закон Ома в дифференциальном форме, связывающий плотность тока в любой точке внутри проводника с напряженностью электрического поля в этой же точке. Это соотношение справедливо и для переменных полей.
Опыт показывает, что в первом приближении изменение удельного сопротивления, а значит и сопротивления, с температурой описывается линейным законом:
где r и r0, R и R0 – соответственно удельные сопротивления и сопротивления проводника при t и 0°С, a -температурный коэффициент сопротивления, для чистых металлов (при не очень низких температурах) близкий к 1/273 К–1. Следовательно, температурная зависимость сопротивления может быть представлена в виде
где Т – термодинамическая температура.
На зависимости электрического сопротивления металлов от температуры основано действиетермометров сопротивления, которые позволяют по градуированной взаимосвязи сопротивления от температуры измерять температуру с точностью до 0,003 К. Термометры сопротивления, в которых в качестве рабочего вещества используются полупроводники, изготовленные по специальной технологии, называются термисторами. Они позволяют измерять температуры с точностью до миллионных долей кельвин.
4. Работа и мощность тока. Закон Джоуля – Ленца
Рассмотрим однородный проводник, к концам которого приложено напряжение U. За время dt через сечение проводника переносится заряд dq=Idt. Так как ток представляет собой перемещение заряда dq под действием электрического поля, то, работа тока
Если сопротивление проводника R, то, используя законОма, получим
мощность тока
Если сила тока выражается в амперах, напряжение – в вольтах, сопротивление — в омах, то работа тока выражается в джоулях, а мощность – в ваттах. На практике применяются также внесистемные единицы работы тока: ватт-час (Вт×ч) и киловатт-час (кВт×ч). 1 Вт×ч – работа тока мощностью 1 Вт в течение 1 ч; 1 Вт×ч=3600 Bт×c=3,6×103 Дж; 1 кВт×ч=103 Вт×ч= 3,6×106 Дж.
Выражение представляет собойзакон Джоуля—Ленца, экспериментально установленный независимо друг от друга Дж. Джоулем и Э. X. Ленцем.*
* Э. X. Ленц (1804—1865) — русский физик.
5. Закон Ома для неоднородного участка цепи
Рассмотрим неоднородный участок цепи, где действующую э.д.с. на участке 1-2 обозначим через а приложенную на концах участка разность потенциалов – через j1 - j2.
Если ток проходит по неподвижным проводникам, образующим участок 1-2, то работа А12 всех сил (сторонних и электростатических), совершаемая над носителями тока, по закону сохранения и превращения энергии равна теплоте, выделяющейся на участке. Работа сил, совершаемая при перемещении заряда Q0 на участке 1-2,
Э.д.с. как и сила тока I, - величина скалярная. Ее необходимо брать либо с положительным, либо с отрицательным знаком в зависимости от знака работы, совершаемой сторонними силами. Если э.д.с. способствует движению положительных зарядов в выбранном направлении (в направлении 1-2), то > 0. Если э.д.с. препятствует движению положительных зарядов в данном направлении, то < 0. За время t в проводнике выделяется теплота
откуда
закон Ома для неоднородного участка цепи в интегральной форме, который является обобщенным законом Ома.
Если на данном участке цепи источник тока отсутствует (=0), то приходим к закону Ома для однородного участка цепи (98.1):
(при отсутствии сторонних сил напряжение на концах участка равно разности потенциалов. Если же электрическая цепь замкнута, то выбранные точки 1 и 2 совпадают, j1=j2; тогда получаем закон Ома для замкнутой цепи:
где - э.д.с., действующая в цепи, R — суммарное сопротивление всей цепи. В общем случае R=r+R1, где r — внутреннее сопротивление источника тока, R1—сопротивление внешней цепи. Поэтому законОма для замкнутой цепи будет иметь вид
Если цепь разомкнута и, следовательно, в ней ток отсутствует (I = 0), то из закона Ома получим, что =j1—j2, т. е. э.д.с., действующая в разомкнутой цепи, равна разности потенциалов на ее концах. Следовательно, для того чтобы найти э.д.с. источника тока, надо измерить разность потенциалов на егоклеммах при разомкнутой цепи.
Дата добавления: 2015-06-17; просмотров: 1960;