Непрерывность функции комплексного переменного

Пусть точка Z0 принадлежащая E, является предельной точкой множества Е.

Функция f(Z) называется непрерывной в точке Z0 принадлежащей E, если .

Таким образом, функция f(Z) называется непрерывной в точке Z0 принадлежащей E, если для любого , что для любой точки Z, принадлежащей E (Z ≠ Z0), удовлетворяющей неравенству , выполняется неравенство .

Т. к. равенство эквивалентно выполнению равенств , , то непрерывность функции f(Z) в точке Z0 эквивалентно непрерывности вещественных функций u(x,y) и v(x,y) в соответствующей точке (x0,y0). Поэтому на непрерывность функции комплексного переменного распространяются все основные свойства непрерывных функций вещественных переменных. В частности справедливы теоремы.

 








Дата добавления: 2015-06-12; просмотров: 661;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.