Влияние внешних условий на степень открытости устьиц.

Различают три типа реакций устьичного аппарата на условия среды:

1. Гидропассивная реакция — это закрывание устьичных щелей, вызванное тем, что окру­жающие паренхимные клетки переполнены водой и механически сдавливают замыкающие клетки. В результате сдавливания устьица не могут открыться и устьичная щель не образуется. Гидропассивные движения обычно наблюда­ются после сильных поливов и могут служить причиной торможения процесса фотосинтеза.

2. Гидроактивная реакция открывания и закрывания — это движе­ния, вызванные изменением в содержании воды в замыкающих клетках устьиц. Механизм этих движений рассмотрен выше.

3. Фотоактивная реакция. Фо­тоактивные движения проявляются в открывании устьиц на свету и закрывании в темноте. Особенное значение имеют красные и синие лучи, которые наиболее эффективны в процессе фотосинтеза. Это имеет большое приспособительное значение, т. к. благодаря открытию устьиц на свету к хлоропластам диффунди­рует СО2, необходимый для фотосинтеза.

Механизм фотоактивных движений устьиц не является вполне ясным. Свет оказывает косвенное влияние через изменение концентрации СО2 в замыкаю­щих клетках устьиц. Если концентрация СО2 в межклетниках падает ниже определенной величины (эта величина зависит от вида растений), устьица от­крываются. При повышении концентрации СО2 устьица закрываются. В замы­кающих клетках устьиц всегда имеются хлоропласты и происходит фотосинтез. На свету СО2 ассимилируется в процессе фотосинтеза, содержание ее падает. Согласно гипотезе канадского физиолога У. Скарса, СО2 оказывает влияние на степень открытости устьиц через изменение рН в замыкающих клетках. Умень­шение содержания СО2 приводит к повышению значения рН (сдвигу в щелочную сторону). Напротив, темнота вызывает повышение содержания СО2 (вследст­вие того, что СО2 выделяется при дыхании и не используется в процессе фото­синтеза) и снижение значения рН (сдвиг в кислую сторону). Изменение значения рН приводит к изменению активности ферментных систем. В частности, сме­щение значения рН в щелочную сторону увеличивает активность ферментов, участвующих в распаде крахмала, тогда как сдвиг в кислую сторону повышает активность ферментов, участвующих в синтезе крахмала. Распад крахмала на сахара вызывает увеличение концентрации растворенных веществ, в связи с этим осмотический потенциал и, как следствие, водный потенциал становятся более отрицательными. В замыкающие клетки начинает интенсивно поступать вода из окружающих паренхимных клеток. Устьица открываются. Противоположные изменения происходят, когда процессы сдвигаются в сторону синтеза крахмала. Однако это не единственное объяснение. Показано, что замыкающие клетки устьиц содержат значительно больше калия на свету по сравнению с темнотой. Установлено, что количество калия в замыкающих клетках при открытии усть­иц повышается в 4—20 раз при одновременном уменьшении этого показателя в сопутствующих клетках. Происходит как бы перераспределение калия. При открытии устьиц возникает значительный градиент мембранного потенциала между замыкающими и сопутствующими клетками (И.И. Гунар, Л.А. Паничкин). Добавление АТФ к эпидермису, плавающему на растворе КС1, увеличивает ско­рость открытия устьиц на свету. Показано также возрастание содержания АТФ в замыкающих клетках устьиц в процессе их открывания (С.А. Кубичик). Можно полагать, что АТФ, образованная в процессе фотосинтетического фосфорилирования в замыкающих клетках, используется для усиления поступления калия. Это связано с деятельностью Н+-АТФазы. Активизация Н+-насоса способствует выходу Н+ из замыкающих клеток. Это приводит к транспорту по электриче­скому градиенту К+ в цитоплазму, а затем в вакуоль. Усиленное поступление К+, в свою очередь, способствует транспорту С1- по электрохимическому градиенту. Осмотическая концентрация возрастает. В других случаях поступление К+ уравновешивается не С1-, а солями яблочной кислоты (малатами), которые образуются в клетке в ответ на снижение значения рН в результате выхода Н+. Накопление осмотически активных веществ в вакуоли (К+,С1-, малаты) снижа­ет осмотический, а затем и водный потенциал замыкающих клеток устьиц. Вода поступает в вакуоль, и устьица открываются. В темноте К+ транспортируется из определенной величины (эта величина зависит от вида растений), устьица от­крываются. При повышении концентрации СО2 устьица закрываются. В замы­кающих клетках устьиц всегда имеются хлоропласты и происходит фотосинтез. На свету СО2 ассимилируется в процессе фотосинтеза, содержание ее падает. Согласно гипотезе канадского физиолога У. Скарса, СО2 оказывает влияние на степень открытости устьиц через изменение рН в замыкающих клетках. Умень­шение содержания СО2 приводит к повышению значения рН (сдвигу в щелочную сторону). Напротив, темнота вызывает повышение содержания СО2 (вследст­вие того, что СО2 выделяется при дыхании и не используется в процессе фото­синтеза) и снижение значения рН (сдвиг в кислую сторону). Изменение значения рН приводит к изменению активности ферментных систем. В частности, сме­щение значения рН в щелочную сторону увеличивает активность ферментов, участвующих в распаде крахмала, тогда как сдвиг в кислую сторону повышает активность ферментов, участвующих в синтезе крахмала. Распад крахмала на сахара вызывает увеличение концентрации растворенных веществ, в связи с этим осмотический потенциал и, как следствие, водный потенциал становятся более отрицательными. В замыкающие клетки начинает интенсивно поступать вода из окружающих паренхимных клеток. Устьица открываются. Противоположные изменения происходят, когда процессы сдвигаются в сторону синтеза крахмала. Однако это не единственное объяснение. Показано, что замыкающие клетки устьиц содержат значительно больше калия на свету по сравнению с темнотой. Установлено, что количество калия в замыкающих клетках при открытии усть­иц повышается в 4—20 раз при одновременном уменьшении этого показателя в сопутствующих клетках. Происходит как бы перераспределение калия. При открытии устьиц возникает значительный градиент мембранного потенциала между замыкающими и сопутствующими клетками (И.И. Гунар, Л.А. Паничкин). Добавление АТФ к эпидермису, плавающему на растворе КС1, увеличивает ско­рость открытия устьиц на свету. Показано также возрастание содержания АТФ в замыкающих клетках устьиц в процессе их открывания (С.А. Кубичик). Можно полагать, что АТФ, образованная в процессе фотосинтетического фосфорили-рования в замыкающих клетках, используется для усиления поступления калия. Это связано с деятельностью Н+-АТФазы. Активизация Н+-насоса способствует выходу Н+ из замыкающих клеток. Это приводит к транспорту по электриче­скому градиенту К+ в цитоплазму, а затем в вакуоль. Усиленное поступление К+, в свою очередь, способствует транспорту С1- по электрохимическому градиенту. Осмотическая концентрация возрастает. В других случаях поступление К+ уравновешивается не С1-, а солями яблочной кислоты (малатами), которые образуются в клетке в ответ на снижение значения рН в результате выхода Н+. Накопление осмотически активных веществ в вакуоли (К+,С1-, малаты) снижа­ет осмотический, а затем и водный потенциал замыкающих клеток устьиц. Вода поступает в вакуоль, и устьица открываются. В темноте К+ транспортируется из замыкающих в окружающие клетки и устьица закрываются. Указанные процес­сы представлены в виде схемы:

Движения устьиц регулируются гормонами растений (фитогормонами). Открывание устьиц предупреждается, а закрывание стимулируется фитогормоном — абсцизовой кислотой (АБК). Интересно в связи с этим, что АБК тормо­зит синтез ферментов, участвующих в распаде крахмала. Имеются данные, что под влиянием абсцизовой кислоты содержание АТФ падает. Вместе с тем АБК уменьшает поступление К+, возможно, за счет уменьшения выхода ионов Н+ (торможение Н+-помпы). Обсуждается роль других фитогормонов — цитоки-нинов в регуляции открывания устьиц путем усиления транспорта К+ в замы­кающие клетки устьиц и активизации Н+-АТФазы.

Движение устьичных клеток оказалось зависимым от температуры. При ис­следовании ряда растений показано, что при температуре ниже 0°С устьица не открываются. Повышение температуры выше 30°С вызывает закрытие устьиц. Возможно, это связано с повышением концентрации СО2 в результате увели­чения интенсивности дыхания. Вместе с тем имеются наблюдения, что у разных сортов пшеницы реакция устьиц на повышенную температуру различна. Дли­тельное воздействие высокой температуры повреждает устьица, в некоторых случаях настолько сильно, что они теряют способность открываться и закры­ваться.

Наблюдения за степенью открытости устьиц имеют большое значение в фи­зиологической и агрономической практике. Они помогают установить необхо­димость снабжения растения водой. Закрытие устьиц говорит уже о неблаго­приятных сдвигах в водном обмене и, как следствие, о затруднениях в питании растений углекислым газом.

 








Дата добавления: 2015-06-05; просмотров: 5862;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.