УРАВНЕНИЕ ДВИЖЕНИЯ МЕХАНИЗМА

 

После выполнения приведения сил и масс, любой механизм с одной степенью подвижности можно заменить его динамической моделью (рисунки 4.1; 4.5). Эта модель имеет переменный приведенный момент инерции Iпр и приведенный момент Мпр. Закон движения модели такой же, как и закон движения начального звена (уравнение 4.1).

Основой для составления уравнения движения механизма служит теорема об изменении кинетической энергии

, (4.8)

где υ – скорость в конце движения, υо – скорость в начале движения, Адв – работа движущих сил, Асс – работа сил сопротивления. При этом работу совершают все силы и моменты, а также силы трения.

Уравнение движения в энергетической форме. Если привести все силы и массы к звену приведения, то уравнение примет вид

, (4.9)

где АРдв – работа приведенной к звену приведения движущей силы, АРсс – работа приведенной силы сопротивления, mпр и mпр0 - приведенные массы, соответствующие конечному и начальному положениям.

Обычно удобнее в левую часть уравнения вводить работу приведенных моментов АМдв и МРсс, а правую часть выражать через приведенные моменты инерции Iпр и Iпр0. Тогда выражение (4.9) примет вид

. (4.10)

Уравнение движения в дифференциальной форме.Уравнение движения механизмов машинного агрегата запишем через приведенные силы и массы, для чего продифференцируем уравнение (4.9)

, (4.11)

где Рдв – движущая силы, Рс – сила сопротивления.

То же самое уравнение можно записать, если воспользоваться приведенным моментом и приведенным моментом инерции, для чего продифференцируем уравнение (4.10)

. (4.12)

Уравнение движения в интегральной форме.В дифференциальное уравнение движения механизма машинного агрегата входят приведенные моменты движущих сил и сил сопротивления. Эти моменты могут быть функциями обобщенной координаты φ или ее первой производной φ' = ω, или времени t. Тогда уравнение (4.12) запишем в виде

. (4.13)

Интегрируя данное выражение по обобщенной координате, получим

. (4.14)

 








Дата добавления: 2015-06-01; просмотров: 4825;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.