Статических каналов передачи дискретных сообщений. Вернёмся к информационным характеристикам бинарной системы ССПИ (см

Вернёмся к информационным характеристикам бинарной системы ССПИ (см. рис. 6) и рассмотрим теперь зависимость среднего количества информации (U, П) на один знак дискретного источника сообщений U, передаваемой посредством бинарного канала КПДС с переходной матрицей , от характеристик подключаемого к нему источника ДИС, то есть от величины P. В этом случае

P'1= P p + (1 – P) (1 – q); P'2 = P (1 – p) + (1 – P) q = 1 – P'1;

и в соответствии с формулой (7.1) имеем

(U, П) = P [ p log p + (1 – p) log (1 – p)] + (1 – P) [q log q + (1 – q) log (1 – q)] –

– [P ( p + q – 1) + 1 – q] log [P ( p + q – 1) + 1 – q] –

– [ qP ( p + q – 1)] log [qP ( p + q – 1)]. (9.1)

В симметричном бинарном канале ( p = q):

(U, П) = p log p + (1 – p) log (1 – p) – [P (2p – 1) + 1 – p

×log [P (2p – 1) + 1 – p] – [ pP (2p – 1)] log [ pP (2p – 1)]. (9.2)

Зависимость величины (U, П) для симметричного бинарного канала КПДС от величины P представлена кривыми 1 ( p = q = 1) и 2 (0,5 < ( p = q) < 1) на рис. 8.

При (0,5 < p < q < 1) зависимость (U, П) от величины P имеет вид, изображенный кривой 3; при (0,5 < q < p < 1) – кривой 4 на рис. 8.

Величина P = P0, соответствующая максимальному значению (U, П) =

= ( p, q), находится из уравнения d (U, П)/dP = 0. В результате решения этого уравнения получаем:

P0 = (q – β)/( p + q – 1),

макс( p, q) = γ (q – β) – β log β – (1 – β) log (1 – β) + q log q + (1 – q) log (1 – q),

где β = (1 + 2γ) –1, γ = [ p log + q log + log ]/( p + q – 1).

 


бит

знак

1

 

1

 

0,5

 

3

2

4

 

 

 


P0 0,5 1 P

Рис. 8. Зависимость среднего на знак количества информации

на выходе бинарного канала КПДС

от вероятности P выдачи знака u1 источником ДИС:

1 – ( p = q = 1); 2 – (0,5 < p = q < 1); 3 – (0,5 < p < q < 1); 4 – (0,5 < q < p < 1)

 

Естественно, величина макс( p, q) ≡ макс(Π) зависит только от переходныхвероятностей p и q бинарного канала КПДС, а потому может служить егособственной информационной характеристикой – вне зависимости от информационных характеристик подключаемого к нему источника ДИС. Поэтому величину макс(Π) будем называть удельной информационной ёмкостьюстатического канала КПДС, или просто ёмкостью канала КПДС и обозначать как (Π) ≡ макс(Π).

Величина P0 соответствует априорной вероятности одного из первичных знаков бинарного источника ДИС. Этот источник ДИС будет согласован с каналом КПДС, который характеризуется величинами p и q.

Удельная информативность (энтропия) такого согласованного источника ДИС: согл ( p, q) ≡ Hсогл ( p, q) ≡ – P0 log P0 – (1 – P0) log (1 – P0), а коэффициент надёжности получившейся оптимальной статической системы передачи бинарной информации ССПИ χ( p, q) = макс( p, q)/Hсогл ( p, q).

Отсюда практический вывод:

чтобы обеспечить минимум потерь информации в бинарном канале КПДС с переходными вероятностями (0,5 < p < 1) и (0,5 < q < 1), нужно так перекодировать, с помощью промежуточных символов , первичный источник ДИС, чтобы вероятность P выдачи кодового слова для знака u1 соответствовала величине P0.

Что же происходит при 0 < p < 0,5 и 0 < q < 0,5?

Рассмотрим симметричный бинарный канал КПДС с симметричным бинарным источником ДИС: P = 0,5; p = q. В этом случае, в соответствии с формулой (7.1), величина Ik j = log (Pj k /P'k), и мы имеем:

P'1 = P'2 = 0,5; I11 = log (2 p); I21 = log [2 (1 – p)];

= 0,5 p log (2 p); = 0,5 (1 – p) log [2(1 – p)].

Графики зависимости величин I11, I21, и от значения величины p представлены на рис. 9.

Из рис. 9 следует, что при p = 0,5 количество информации I11 в символе w1 относительно знака u1 равно нулю (I11 = 0), а при p < 0,5 – становится отрицательным, что не отвечает интуитивному пониманию термина «информация». Зато при p < 0,5 величина I12 становится положительной. Это значит, что при 0,5 < p < 1 символу w1 следует присваивать значение знака u1, а при 0 < p < 0,5 – значение u2. При этом сумма среднего количества информации + , содержащейся в символе w2, всегда будет величиной неотрицательной при любом значении p.

Следовательно, рассчитанное по формуле (7.1) количество выходной ин-

формации всегда будет положительной величиной, за исключением случая p = 0,5, когда происходит полная потеря информации: I11 = I12 = I21 = I22 = 0.

Именно при таком (байесовском) алгоритме работы системы ССПИ реализуются формально-теоретические оценки, даваемые прикладной теорией информации.

В рассматриваемой системе ССПИ (P = 0,5; p = q) среднее количество информации, получаемое на выходе бинарного канала КПДС, (U, П) ≡ ≡ H(U, П) (бит/знак), численно равна его коэффициенту надёжности χ(½, p, q) и составляет

(U, П) = 1 + p log p + (1 – p) log (1 – p) = χ( p). (9.3)

бит Ikj

знак

1

I21 I11


0

1 p

 

 

– 1

 

I11 I21

– 2

 

 

Рис. 9. Зависимость информационных характеристик I k j

симметричного бинарного канала КПДС

от значений его переходных вероятностей p = q

 

В общем случае (при N > 2) решением системы N 2 уравнений относительно величин Pjk можно вычислить те значения Pjk(0), которые определяют переход величин Ik j через “ноль” – и соответствующим образом сконструировать (сравнением данных значений {Pjk} с граничными {Pjk(0)} ) алгоритм присвоения символам {wk} соответствующих значений знаков {uj} . По существу именно таким образом реализуется байесовский критерий принятия решений.

В то же время, можно сформулировать следующее утверждение.

Если удельная информативность , или энтропия H(U) данного источника ДИС не более удельной информационной ёмкости (П) статического канала передачи КПДС, имеющего переходную матрицу П, то можно так закодировать знаки {uj} источника ДИС U, что передача длинных сообщений Si(n) (n >> 1) источника ДИС посредством статического канала КПДС будет почти безошибочной. Если (П) < H(U), то не существует способа кодирования знаков {uj} , который бы позволил передавать информацию с коэффициентом информационной надёжности бóльшим, чем χ(U, П) = ℰ (П)/H(U). Иначе: при H(U) (П) средняя потеря информации на один знак источника ДИС будет не меньше, чем разность Δ(U, Π) = H(U) – ℰ (П).

 

Получив в разд. 9 достаточно существенные для практических приложений общетеоретические результаты теории информации, перейдём к способам их практической реализации.

Вопросы для самопроверки

1. Каким образом вычисляется удельная информативность бинарной системы передачи дискретных сообщений?

2. Что такое информационная ёмкость бинарного канала передачи дискретных сообщений и в чём состоит её практический смысл?

3. Каким образом вычисляется коэффициент информационной надёжности симметричного бинарного канала передачи дискретных сообщений?

4. Каким образом соотносятся между собой удельная информативность источника дискретных сообщений и информационная ёмкость статического канала передачи дискретных сообщений?

 

 








Дата добавления: 2015-05-16; просмотров: 749;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.029 сек.