ВОЗДЕЙСТВИЯ 1 страница

Циркуляция крови в мозгу по сравнению с циркуляцией ее в других органах обладает рядом существенных особенностей.

Как известно, снабжение кровью большинства внутренних органов осуществляется по специальной артерии, проникающей через так назы­ваемые ворота органа в его паренхиму.

В своем дальнейшем ходе питающая артерия отдает по всем направ­лениям многочисленные ветви, в конце концов распадающиеся на капил­ляры. Таким образом, снабжение кровью в этих случаях происходит по направлению от центра к периферии.

Иные соотношения наблюдаются в мозгу.

Крупные артерии, представляющие собой ветви стволов, отходящих от виллизиева круга, располагаются на наружных поверхностях мозга. Как от крупных стволов поверхностных артерий, так и от их ветвей раз­личного порядка вплоть до самых мелких под прямым углом отходят радиальные артерии, проникающие в мозговое вещество для снабжения кровью коры и белого вещества.

Ветви радиальных артерий в различных слоях коры и белого веще­ства распадаются на капилляры, благодаря чему каждый слой содержит не только более или менее крупные ветви той или другой радиальной артерии, но и густое капиллярное сплетение.

Таким образом, в отличие от других органов кровоснабжение мозга идет от периферии к центру.

Вторая особенность кровообращения в мозгу заключается в том. что в мозгу нельзя отметить тех определенных соотношений между питаю­щей артерией и отводящими венами, которые обычно наблюдаются в других органах и особенно отчетливо в конечностях. Из изложенного в главе, посвященной анатомии артерий и вен головного мозга, следует, что на поверхности мозга артерии не только не сопровождаются венами, но часто идут совершенно в противоположных направлениях.

Так, например, вены, собирающие кровь с верхней наружной поверх­ности мозга, несут кровь к верхнему продольному синусу, т. е. идут по направлению от наружной к медиальной поверхности мозга. В то же вре­мя артерии, представляющие собой ветви передней мозговой артерии, направляются навстречу им от медиальной поверхности полушария на наружную поверхность его.


То же наблюдается и в отношении направления хода ветвей средней мозговой артерии и вен, отводящих кровь с наружной поверхности моз­га в среднюю мозговую вену.

Еще более сложные взаимоотношения между артериями и венами наблюдаются в мозговом веществе.

Третьей особенностью мозгового кровообращения является характер реакций сосудисто-капиллярной сети мозга в ответ на ряд различных физиологических и патологических воздействий. Так, например, действие асфиксии на весь ор­ганизм в целом со­провождается рас­ширением сосудисто-капиллярной сети мозга и в то же вре­мя асфиксия вызы­вает сужение сосу­дов за малым ис­ключением почти во всех органах тела.

Рис. 126. а — изменение скорости тока крови в сосудах теменной области коры и языка у кролика при раздражении головно­го конца перерезанного симпатического нерва (по Шмидту); б — изменение скорости тока крови в сосудах коры и мыш­цы при раздражении головного конца перерезанного сим­патического нерва (по Шмидту).

Особенности ре­акций сосудистой си­стемы мозга выявля­ются и при воздей­ствии на нее симпа­тической и парасим­патической системы. Раздражение симла-тического нерва на шее животного со­провождается суже­нием крупных по ка­либру артерий мяг­кой мозговой оболоч-ки всего лишь на 8— 10% от исходного диаметра. Но раз­дражение той же самой интенсивности вызывает сужение сосудов уха более чем на 50%.

На рис. 126, а, б показано, что раздражение головного конца перере­занного симпатического нерва имеет своим следствием резкое уменьше­ние скорости тока крови в сосудах языка и в mus. mylohyoideus кролика и в то же время вызывает лишь незначительные изменения скорости тока крови в сосудах теменной области.

Введение в ток крови симпатикотропных веществ, например, адре­налина, также сопровождается различными реакциями сосудов мозга и периферии.

Как можно видеть из рис. 127, скорость тока крови в сосудах мозго­вого вещества увеличивается, тогда как в мышце она резко уменьшается. Противоположный эффект наблюдается в этом случае в условиях неизменяющегося общего кровяного давления и, следовательно, не зави­сит от него.

Различное влияние оказывает также перерезка симпатического нер­ва на шее животного. Освобождение от влияния со стороны симпатиче­ского отдела нервной системы имеет своим следствием резкое увеличение


скорости тока крови в сосудах мышц. Интракраниальный ток крови при этом не изменяется совсем или меняется очень мало (рис. 128).

Одни и те же дозы веществ, расширяющих сосуды (нитроглицерин, кофеин и т. д.), вызывают значительно меньшее увеличение скорости тока крови в мозговых сосудах, чем в сосудах экстракраниальной области.

Наконец, особого внимания заслуживает чрезвычайная чувствитель­ность нервных клеток мозговой ткани к недостатку кровоснабжения и связанная с этим тесная зависимость жизнедеятельности нервных элемен­тов от непрерывного поступления к ним крови.

Последнее обстоятельство послужило основанием для предположе­ния о том, что постоянная активность мозга должна быть связана с не­прерывным функционированием всего сосудисто-капиллярного русла




 


 


Рис. 127. Изменение скорости тока крови в сосудах коры и мышцы при введении адреналина

(по Шмидту). Момент введения показан стрелкой.


Рис. 128. Изменение скорости тока крови в сосудах мозга и мышцы при перерезке симпа­тического нерва на шее жи­вотного (по Шмидту).


мозга в целом. Вследствие непрерывной потребности нервных клеток в определенном уровне напряжения кислорода в крови все капилляры моз­га должны быть открыты. Крайним выражением данного взгляда явилось положение о наличии на капиллярах мозга эластической обо­лочки, не допускающей изменения их диаметра ни в сторону сужения, ни в сторону расширения (Е. К. Сепп, 1927).

В настоящее время последнее предположение отвергнуто всеми ис­следователями, так как накопленные факты не позволяют сомневаться в. том, что капилляры мозга могут изменять свой просвет в зависимости от многих физиологических и патологических воздействий. Установлено также, что гистологическое строение мозгового капилляра ничем особен­ным не отличается от строения его в других органах и тканях.

Специальные исследования, предпринятые в этом направлении П. Е. Снесаревым, позволили ему притти к заключению о наличии на стенке мозгового капилляра лишь разрозненных аргирофильных волокон, да и то появляющихся, начиная с определенного возраста. К тем же выводам пришел Д. С. Курбаналиев (1935), утверждающий, что в дет­ском и молодом возрасте эластической оболочки на капиллярах мозга нет. Появление эластических волокон в стенке мозгового капилляра от­мечалось этим автором только в старшем, а чаще в старческом возрасте и являлось с его точки зрения результатом изменений функционального характера.

Таким образом, стенка мозгового капилляра представляет собой чрезвычайно тонкую мембрану, состоящую из протоплазмы эндотелиаль-


ной клетки. Благодаря отсутствию оболочек на мозговом капилляре, нормальная, не измененная патологическим процессом стенка его под­вижна и просвет капилляра мозга может изменяться в ту и другую сторону.

Как уже было сказано, малая устойчивость нервных клеток при условии недостаточного снабжения их кислородом указывает на особый характер функционирования всей сосудисто-капиллярной сети мозга в нормальных условиях.

Постановка вопросов о сущности циркуляции крови в мозгу имеет тем большее значение, что, как известно, те же вопросы для ряда других органов и тканей стоят совершенно в иной плоскости.

В отношении выяснения сущности циркуляции крови в органах и тканях работающих и находящихся в покос интересны опыты Крога (Krogh, 1929).

Крог инъицировал в кровяное русло при жизни лягушки или мор­ской свинки китайскую тушь. В результате произведенных опытов он получил возможность составить достаточно точное сравнительное пред­ставление о количестве открытых и закрытых капилляров в различных органах к моменту смерти. При изучении препаратов, приготовленных из ряда органов, Крог установил различную степень заполнения сосудистого русла, что в свою очередь являлось косвенным доказательством различ­ного количества открытых в момент инъекции капилляров.

В результате проведенных опытов было выяснено, что наибольшее количество открытых капилляров содержится в мозгу, печени и коже, тогда как в языке, а также в пустом желудке и кишках большинство капилляров закрыто. В соответствии с этим язык, пустой желудок и кишки инъицировались чрезвычайно мало, мозг, печень и кожа — всегда хорошо.

Различные мышцы тех же животных обнаружили различную степень инъекции. В одних покоящихся мышцах (например, в m. extensor tarsi у лягушки) количество заполненных тушью капилляров не превышало 5 на площади, равной 1 мм2. В других (например, m. rectus abdominalis) число открытых капилляров колебалось от 115 до 180 на той же площа­ди и составляло 30—40% от общего количества капилляров, характерно­го для данных мышц.

Но совершенно иные соотношения наблюдались в тех случаях, когда в момент инъекции производилось раздражение того или иного органа или тетанизация мышц. Мало инъицирующийся в покойном состоянии язык лягушки значительно лучше инъицировался в условиях раздраже­ния. Число инъицированных капилляров в m. extensor tarsi при раздра­жении мышцы увеличивалось с 5 до 195 на 1 мм2. Увеличение силы раздражения имело своим следствием раскрытие большего количества капилляров, благодаря чему наибольшая степень инъекции отмечалась после тетанизации мышц.

Если в покоящейся мышце лягушки среднее расстояние между от­крытыми капиллярами составляло 200—800 м, то после сокращения мышцы оно уменьшалось до 60—70 м. Различие в количестве открытых капилляров в работающих и покоящихся мышцах выступало отчетливо также при сравнении постоянно работающей мышцы диафрагмы с мыш­цей брюшной стенки, находящейся в покое. В то время как в первой можно было насчитать 2 500 открытых капилляров на площади в 1 мм2, на той же площади второй мышцы их было всего около 200.

Приведенные данные позволяют убедиться, что кровообращение ря­да органов тела и мышечной системы находится в полном соответствии


с их функциональной деятельностью. Усиление функциональной деятель­ности влечет за собой увеличение числа открытых капилляров. Уменьше­ние функциональных требований, предъявляемых в каждый данный момент к тому или другому органу или мышце, влечет за собой полное закрытие части капиллярного русла.

Следовательно, в отношении некоторых органов и мышц не сущест­вует никакого сомнения в том, что капилляры в них могут становиться полностью непроходимыми для тока крови в течение длительного периода покойного состояния. При этом закрытие даже большого количества или большинства капилляров не сопровождается дегенерацией ткани органа или мышцы.

Другими словами, при таком способе кровообращения мы имеем де­ло со сменной циркуляцией. Сменность определяется в этих случаях не сужением и расширением капиллярного русла, а закрытием части его в покойном состояний и открытием при функционировании соответствую­щего органа или мышцы.

Что же представляет собой циркуляция крови в мозгу? Рассмотрим вначале кровоснабжение мозга тех животных, у которых оно осуществляется наиболее примитивным образом. Выше уже упоми­нался особый способ кровоснабжения мозга опоссума. Анатомическое распределение конечных артерий в мозговом веществе указанного живот­ного создает такое расположение капилляров, при котором каждый об­служивает нервные клетки в радиусе не более 25 м от него (например, в коре мозжечка).

Отсутствие экспериментальных данных не дает возможности сделать, какое-либо заключение о реакциях капиллярной сети мозга опоссума при воздействии на нее физиологических или патологических факторов. Иначе говоря, мы не знаем, имеет ли место при указанных воздействиях расширение или сужение капилляров. Однако точное соответствие коли­чества капилляров количеству и функциональным требованиям нервных клеток исключает всякое предположение о возможности полного закры­тия капилляров с сохранением нормальных условий жизнедеятельности нервной ткани. Поэтому все капилляры мозга опоссума всегда открыты/ Каково же поведение капилляров мозга животных, для которых характерна непрерывная сосудисто-капиллярная сеть?

Исследование скорости тока крови в сосудах мозга в условиях за­крытого черепа, а также наблюдения сосудов мягкой мозговой оболочки через «окно», герметически вставленное в череп, привело ряд исследовате­лей к выводу о постоянстве циркуляции крови в мозгу (Clark a. Wenst-ler, 1938; Forbes a. Cobb, 1938; Lennox a. Gibbs, 1938). Исходя из того, что мозг всегда активен и его функциональные потребности близки к максимальным, эти исследователи считают, что все капилляры мозга всегда открыты.

При изучении циркуляции крови по сосудам мягкой мозговой обо­лочки с помощью капилляроскопа через «окно», герметически вставленное в череп, мы неоднократно имели возможность убедиться в том, что на­ходившиеся под наблюдением сосуды различного диаметра никогда не изменяли своих размеров. Это в равной мере могло быть отмечено как в случаях наркотизации животных, так и в тех случаях, когда наблюде­ния производились на ненаркотизированных животных.

Таким образом, при отсутствии внешних раздражений, специфиче­ских для областей мозгового вещества, находящихся под наблюдением, сосуды мягкой мозговой оболочки этих областей спонтанно не расширя-


ются и не суживаются. И в этом отношении наши данные вполне совпа­дают с результатами работы Кларка (Clark a. Wenstler, 1938). Как из­вестно, Кларк со своими сотрудниками изучал поведение сосудов мягкой мозговой оболочки теменной области у ненаркотизированного кролика через окно в черепе. Герметически вставленное «окно» обеспечивало нор­мальное существование сосудов мозга в закрытом черепе.

Как было установлено в этих опытах, продолжавшихся в течение нескольких месяцев, артерии и вены, располагавшиеся в мягкой оболоч­ке, не изменяли в поле зрения свой просвет при умеренных колебаниях;

Рис. 129. Капиллярная сеть коры нормального жи­вотного, убитого декапиталией.

Импрегнация капиллярной сети мозга кошки по методу В. Н. Клосовского. Увеличение 400.

окружающей температуры, а также при шумах или звуках. Наряду с от­сутствием спонтанных изменений просвета сосудов мягкой мозговой обо­лочки, сосуды уха обнаруживали колебания своего просвета в широких пределах даже при незначительных изменениях в окружающей среде.

Однако некоторые данные нашей лаборатории заставляют с осто­рожностью говорить о раскрытии в мягкой мозговой оболочке всех без исключения сосудов. Изучение артериальной сети мягкой мозговой обо­лочки в нормальных условиях и при асфиксии у животных без нарко­за позволяет отметить значительно большее количество сосудов диамет­ром в 10—20 м в условиях асфиксии по сравнению с числом их у того же животного до опыта. В случае подтверждения полученных фактов можно будет говорить о закрытии некоторой части сосудов незначитель­ного размера в мягкой мозговой оболочке в условиях нормального функ­ционирования мозга при отсутствии внешних раздражений.

С аналогичными фактами сталкиваемся мы и при изучении капил­лярной сети мозга нормального животного, убитого мгновенной декапн-гацией. Как можно видеть на рис. 129, капиллярная сеть мозга нормального животного, убитого декапитацией, характеризуется равно-



Рис. 130.Различные виды закрытых капилляров в капилярной сети коры нормального животного, убитого декапитацией.

а - закрытый капилляр в мозгу кошки; б — закрытый капилляр в мозгу собаки. импрегнация капиллярной сети по методу Б. Н. Клосовского. Увеличение 400.


мерностью просвета капилляров во всех отделах коры мозга; одинако­вые по своему диаметру на всем своем протяжении капилляры формиру­ют сеть, состоящую из правильных петель.

Обращает на себя внимание «округлость» колен капилляров, являю­щихся сторонами капиллярной петли. Такого рода форма капилляров го­ворит о напряжении капиллярной стенки, о хорошем тоническом состоя­нии ее в силу полного заполнения капилляра кровью и нормального давления в нем.

Изучение многих серий препаратов мозга нормальных животных, обработанных предложенным нами методом импрегнации, позволило убедиться в том, что все капилляры мозгового вещества в нормальных условиях открыты. Но среди правильных по форме и диаметру капилля­ров у нормальных животных можно встретить и то, что мы в общей фор­ме называем закрытыми капиллярами. Закрытые капилляры в коре и белом веществе встречаются у нормального животного редко. На не­сколько полей зрения при всех поворотах микрометрического винта при увеличении в 400 раз можно отметить один и в исключительных случаях два закрытых капилляра.

Что же мы называем закрытым капилляром?

Выше уже говорилось о том, что у нормального животного, как пра­вило, все капилляры имеют обычно один и тот же диаметр, различный в зависимости от вида животного. У кошки диаметр мозгового капилляра приблизительно равняется 6,8 м, у собаки он несколько больше 7 м, у человека равен приблизительно 8 м и т. д. Интересующие нас закры­тые капилляры в своем поперечнике обычно не превышают 2 м.

Как можно убедиться из рис. 130, а, закрытый капилляр обычно представляет собой плотный тяж диаметром в 1—2 м, тянущийся от од­ного открытого капилляра к другому. Довольно часто встречаются за­крытые капилляры, имеющие вид очень тонкой нити, как это показано на рис. 130, б. Длина описываемых образований весьма различна и в общем соответствует обычной протяженности мозгового капилляра.

Большей частью места отхождения закрытого капилляра от двух других, которые он соединяет, ничем не замечательны, но иногда в этих участках наблюдаются какие-то «наплывы» или скопления плазмы. Эти участки обычно имеют светлокоричневый цвет, тогда как открытые ка­пилляры и соединяющий их закрытый капилляр интенсивно импрегниру-ются и представляются совершенно черными. Природа описанных обра­зований не ясна и требует специального исследования. Можно думать, что это остатки протоплазмы закрывшегося капилляра, но можно также предполагать, что в этих местах располагаются эндотелиальное, а иногда и адвентициальное ядра капилляра.

Приведенный здесь фактический материал позволяет поставить в по­рядке обсуждения вопросы о том, что же представляют собой описанные образования: 1. Соединительнотканную связку или эндотелиальный мо­стик между капиллярами? 2. Временно закрытый, не функционировав­ший в момент смерти животного, но способный функционировать капил­ляр? 3. Капилляр, уже неспособный раскрыться, т. е. капилляр атрофи­рующийся?

Оставляя два последних вопроса для рассмотрения их в последую­щих работах, мы остановимся здесь только на первом.

В работах отдельных исследователей нам удалось отыскать описа­ние особых образований, встречающихся в капиллярной сети централь­ной нервной системы, несколько напоминающих рассматриваемые здесь закрытые капилляры. Так, например, Ранке (1915) сообщает о наблю-


давшихся им в различных частях центральной нервной системы плотных, содержащих фибриллы «соединительных мостиках». Эти «соединительные мостики», состоящие, по мнению Ранке, из адвентициальной плазмы, большей частью встречались в капиллярной сети серого вещества спин­ного мозга и лишь в редких случаях наблюдались в коре полушарий.

Придавая большое значение этим образованиям, Ранке отводил им значительную роль при патологических процессах в мозгу. Так, напри­мер, он считал, что фибробластическая организация при размягчениях мозга у человека может происходить и без участия зернистых шаров лишь на основе «соединительных мостиков». За счет последних он отно­сил также образование фибробластических адвентициальных сетей, по­добных тем, которые описаны П. Е. Снесаревым при параличе, артерио­склерозе и т. д.

Плотные мостики, располагающиеся между капиллярами, еще до Ранке были описаны Генле. Наблюдал их также и Рамон Кахал, назвав­ший их «cordons unitifs». К сожалению, в доступной нам работе Ранке нет иллюстраций. Поэтому трудно судить, о каких образованиях идет здесь речь и являются ли они аналогичными тем, которые мы считаем закрытыми капиллярами.

В книге Е. К. Сеяна «Клинический анализ нервных болезней», ч. Г (1927) приведен рисунок Мингацинни, на котором изображена капилляр­ная сеть участка мозга прогрессивного паралитика. На этом рисунке видны плотные, не имеющие просвета тяжи, соединяющие соседние ка­пилляры. По своему внешнему виду тяжи напоминают то, что мы называем закрытыми капиллярами. По мнению Мингацинни, наличие такого рода плотных тяжей в капиллярной сети мозга должно говорить о протекающих здесь процессах обратного развития. К этому же мнению присоединяется и Е. К. Сепп, считающий плотные тяжи специальными приспособлениями, возникающими в капиллярной сети мозга в случаях затрудненного кровообращения в мозгу.

Таким образом, ряд исследователей наблюдал и описал под различ­ными названиями плотные тяжи в капиллярной сети мозга неизвестной природы. Многие связывали их появление с процессами обратного разви­тия, протекающими в организме при патологических состояниях, и счита­ли их соединительнотканными мостиками, укрепляющими отдельные части капиллярной сети.

Для того чтобы решить вопрос о характере плотных тяжей, описан­ных предшествовавшими авторами в патологически измененной капил­лярной сети мозга человека и обнаруженных нами также и в капилляр­ной сети нормальных животных, мы предприняли опыты с прижизненной инъекцией.

Введение трипановой сини в ток крови нормального животного при жизни его дало нам возможность убедиться, что среди равных по диаметру мозговых капилляров располагаются отдельные резко сужен­ные капилляры, имеющие вид изображенного на рис. 130, а. Диаметр этих капилляров в 3—4 раза меньше диаметра нормально открытых капилляров. Наиболее характерным является тот факт, что резко сужен­ные капилляры содержат окрашенную плазму. Это обстоятельство ука­зывает на имеющийся в суженных капиллярах просвет. Другими слова­ми, мы имеем дело с действительно капиллярами, резко сократившимися и проходимыми для плазмы, а не с соединительнотканными укрепляю­щими мостиками, как это предполагалось некоторыми исследователями. Установив природу этих образований, мы не можем, однако, указать на причину появления резко суженных капилляров в капиллярной сети нор-


мального животного. Факты, полученные нами при прижизненной инъек­ции трипановой сини в ток крови, указывают, что суженные капилляры в момент смерти нормального животного уже были выключены из общей капиллярной сети мозга. Резкое сокращение, вследствие которого они становились непроходимыми для красных кровяных телец, позволяет считать их нефункционирующими.

Нельзя пока сказать, временно ли закрываются капилляры или от­дельные из них, подобные капилляру, представленному на рис. 130, б, в последующем совсем не открываются и должны быть отнесены к ка­тегории атрофирующихся. Можно лишь предполагать, что капилляры, имеющие на импрегнированных препаратах вид тончайшей нити (рис. 130, б), должны быть отнесены к числу капилляров с полностью закрывшимся просветом.

Таким образом, изучение капиллярной сети мозга нормальных жи­вотных, убитых мгновенной декапитацией, позволяет констатировать, что отдельные капилляры этой сети могут резко суживаться или даже за­крываться в условиях отсутствия внешних раздражений.

Каковы же соотношения в сосудистой сети мягкой мозговой оболоч­ки и капиллярной сети мозгового вещества нормальных животных при раздражении различных рецепторов, другими словами, — каково поведе­ние сосудов в различных полях мозга в условиях различных функцио­нальных требований, предъявляемых к расположенным в этих полях нервным клеткам.

В опытах с раздражением вестибулярного аппарата кролика введе­нием в его ухо теплой или холодной воды или при вращении животного мы неизменно отмечали расширение сосудов мягкой мозговой оболочки в лобно-теменной области (Б. Н. Клосовский, 1942). Расширение было весьма значительно и составляло около 50% первоначального размера сосудов, измеренного с помощью окуляр-микрометра до опыта. Харак­терно, что увеличение диаметра сосудов, наблюдавшихся при помощи ка-пилляроскопа через «окно», вставленное герметически в череп, отмечалось только в указанной области. Через второе «окно», располагавшееся под мягкой мозговой оболочкой в затылочной области, можно было отметить некоторое сужение сосудов.

Следовательно, раздражение рецептора имело своим следствием расширение сосудов в участке мягкой мозговой оболочки, располагав­шемся над областью мозгового вещества, нервные клетки которой обна­руживали повышенную жизнедеятельность.

Термопарой, погруженной в эту область, можно было зарегистриро­вать повышение температуры на 0,1—0,2° по сравнению с исходной. Это в свою очередь указывало на расширение сосудов внутримозгового вещества.

Аналогичный опыт, но с раздражением зрительного рецептора, был проделан Шмидтом (1936). Как видно на рис. 131, освещение глаза ку-рарезованной кошки в условиях искусственного дыхания имеет своим следствием увеличение скорости тока крови в сосудах затылочной обла­сти. Определяемое термопарой увеличение тока крови быстро возвра­щается к исходному уровню, как только закрывается глаз и прекра­щается раздражение.

В литературе имеется описание случая ограниченной angioma arte-riale racemosum, располагавшейся в левой затылочной доле. Аускульта-тивно в этом месте можно было услышать шум, который слышал и сам больной. Шум был значительно ослаблен, если больной находился в покойном состоянии, например, отдыхал с закрытыми глазами. Но как

.259


только больной начинал читать или пытался осмыслить виденное, шум резко усиливался. И в то же время другие виды мозговой деятельности, вызванные раздражением обонятельного, слухового или другого рецеп­тора, увеличения шума не давали.

Приведенные эксперименты позволяют понять значение адэкватно-сти раздражителя при изучении изменения просвета сосудов в той или другой области мозга или мягкой мозговой оболочки. И с этой точки зрения могут вызвать возражения данные Кларка и Венстлера, устано­вивших, как мы видели, неиз­менность просвета сосудов в мягкой мозговой оболочке те­менной области у кролика при температурной и другой стиму­ляции.

Рис. 131. Увеличение скорости тока кро­ви в сосудах затылочной области при освещении глаза кошки.

Это возражение заключает­ся в том, что кролик являет­ся животным в основном оль-фактивным и тригеминальным. Поэтому обонятельные и вкусо­вые раздражения у него пред­ставляют собой значительно бо­лее сильные стимуляторы, чем слуховые или температурные. Кроме того, в опытах Л. А. Но­виковой и Г. Я. Хволеса (1946) было установлено, что любое раздражение сопровождается у кролика увеличением электриче­ской активности прежде всего на обонятельном тракте. Другими слова­ми, каждое раздражение вызывает у кролика усиленную деятельность прежде всего отдела мозга, связанного с обонянием.

Отсюда ясно, что раздражение, применявшееся Кларком, не явля­лось адэкватным для той области мозгового вещества, сосудистая сеть мягкой мозговой оболочки которой изучалась через окно в черепе. При отсутствии же особых функциональных требований к той или другой области мозгового вещества трудно ожидать изменений просвета сосудов в соответствующем отделе мягкой мозговой оболочки.

Таким образом, результаты эксперимента Кларка и Венстлера вследствие методической ошибки не могут отрицать возможности рас­ширения или сужения сосудов в областях мозга с повышенной в данный момент функцией.

Но эти эксперименты, как уже говорилось, совершенно правильно указывают на отсутствие изменений просвета сосудов в областях, не функционирующих активно.

Напротив, из результатов описанных опытов следует, что повыше­ние функциональной деятельности в той или другой области мозга при раздражении специфического для этой области рецептора сопровождает­ся увеличением кровообращения в соответствующей области мозга. Уве­личение васкуляризации находит свое отражение в расширении капиллярного русла усиленно функционирующего участка мозгового вещества. Тут же возникает вопрос: как ведет себя капиллярная сеть мозга в участках, функциональная деятельность нервных клеток которых в данный момент понижена. Выше уже говорилось, что в наших опытах было отмечено сужение сосудов мягкой мозговой оболочки затылочной доли при одновременном расширении их в лобной доле.


Не ставя для себя целью исследование поведения сосудов в раз­личных областях мозга при раздражении рецептора, специфического лишь для одной определенной области, мы ограничились в свое время лишь констатацией факта сужения сосудов. К сожалению, по этому вопросу в литературе не существует никаких экспериментальных дан­ных. Можно найти лишь теоретические соображения отдельных исследо­вателей (например, де Но), считавших возможным не только сужение сосудов в участках мозгового вещества с пониженной функциональной деятельностью нервных клеток, но и полное закрытие части капилляр­ного русла в них.








Дата добавления: 2015-05-16; просмотров: 709;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.031 сек.