Фазовый портрет динамики численности 5 страница
Культуры насекомых
Культура насекомых – искусственно созданная популяция, которая прошла в лаборатории не менее одного жизненного цикл (Н.А. Тамарина, 1981,1990). Соответственно, группу личинок насекомых, собранных в поле и содержащихся в лаборатории до завершения их развития нельзя называть культурой. Любая лабораторная или разводимая в промышленных масштабах культура представляет собой своеобразную открытую экосистему, состоящую из одного вида – разводимого насекомого, а все остальные компоненты создаются людьми, включая постоянный приток органического вещества для питания (В.П.Приставко, 1975).
Так как при культивировании насекомых каждая культура представлена одним видом, не связанным с другими, строго говоря, нельзя принять предлагавшиеся термины "техноценоз" (А.З. Злотин, 1981) или "технобиоценоз" (Е.М.Шагов, Л.К.Новикова, 1985). Согласно определению, ценоз – это сообщество разных организмов, которое не может состоять из одного вида. Однако эти термины "прижились" и часто употребляются.
В настоящее время освоена технология разведения не менее 500–600 видов насекомых. Только в бывшем СССР в 1987 г. разводили 225 видов (В.Б.Чернышев и др., 1988). Значительную часть этих насекомых содержат для научных целей – изучения биологии, физиологии, особенностей развития и т.д. Но разведение насекомых имеет также и большое хозяйственное значение. А.З.Злотин (1989) приводит следующие примеры их практического использования:
1) мед, воск, лекарственные средства – медоносная пчела;
2) шелк – 6 видов шелкопрядов;
3) краски, лак, воск – кошениль, лаковый червец, восковая щитовка;
4) корм для рыб, птиц и других животных – сверчки, тараканы, комнатная муха и некоторые другие виды;
5) биоперегной (удобрение), получаемый из навоза, – комнатная муха;
6) корм для насекомых–энтомофагов – многие фитофаги, преимущественно бабочки;
7) интерферон (методами генной инженерии) – тутовый шелкопряд;
8) насекомые–энтомофаги, используемые в защите растений, – в основном паразитические перепончатокрылые, а также златоглазки, хищные галлицы, божьи коровки и т.д.;
9) насекомые–фитофаги для борьбы с сорняками, ядовитыми растениями – некоторые злаковые мухи, листоеды и другие насекомые;
10) опыление сельскохозяйственных культур (в основном люцерны) – мегахила, осмия и другие виды пчел;
11) генетическая борьба с вредными насекомыми – некоторые мухи, бабочки–плодожорки;
12) вирусные препараты для борьбы с насекомыми – преимущественно бабочки;
13) испытания химических средств защиты растений и биопрепаратов – тараканы, мухи, многие бабочки;
14) определение остатков пестицидов в пищевых продуктах (организмы–индикаторы) – комнатные мухи, комары, дрозофилы и т.д.;
15) оценка растений на устойчивость к вредителям – хлопковый долгоносик, клоп–черепашка и т.д.;
16) получение и испытание феромонов – преимущественно бабочки;
17) коллекции насекомых для любителей – преимущественно экзотические бабочки;
18) содержание живых насекомых в террариумах (в зоопарках и у любителей) – преимущественно экзотические тараканы, палочники, богомолы, бабочки и жуки.
Такой широкий спектр использования культур насекомых является четким доказательством того, что их разведение будет расширяться из года в год. Особое значение имеет разведение энтомофагов как надежной замены химическому методу защиты растений.
В последние годы вышло несколько книг, специально посвященных массовому разведению насекомых (А.З. Злотин, 1989; Н.А.Тамарина, 1990; А.Л.Монастырский, В.В. Горбатовский, 1991; P.Singh, R.F.Moone, 1985), а также справочник "Культуры насекомых и клещей в СССР" (В.Б. Чернышев и др., 1988). Поэтому мы вправе ограничиться здесь лишь наиболее существенными аспектами этой важной задачи.
Очевидно, что при основании культуры насекомых исключительно важно хорошо подобрать исходный материал. Самые ценные в генетическом отношении особи могут быть получены в начале вспышки массового размножения вида. Иногда это коррелирует с более темной окраской особей (А.З. Злотин, 1989). Существенным для будущей культуры может оказаться сбор фитофагов на определенных видах растений, а паразитов на определенных хозяевах. Потомство каждой отдельной самки может заметно отличаться по своим свойствам, поэтому желателен индивидуальный подбор наиболее перспективных линий. Еще более широкий спектр признаков дает сравнение нескольких географических популяций вида. Конечно, перед разведением необходимо удалить всех больных или зараженных паразитами насекомых. Такая большая предварительная работа, безусловно, окупается в дальнейшем высоким качеством и устойчивостью культуры.
В принципе, при соблюдении технологии разведения и удачно выбранном природном материале культура насекомых может быть сохранена на протяжении любого количества генераций (М.А.Булыгинская, Н.И.Мезенкова, 1986). Однако во многих случаях без обновления через несколько поколений культуры погибают. В любом случае характеристики культуры, даже при стандартных условиях, не остаются стабильными. Обычно они колеблются с большей или меньшей амплитудой и частотой, что, по–видимому, связано со спонтанными изменениями генофонда. Именно эти колебания резко снижают возможности математической оптимизации условий производства культуры, хотя в литературе и имеются отдельные сообщения об успехах такой оптимизации (В.А. Старец, Е.М. Менчер, 1980; Н.А. Тамарина, В.Н. Максимов, 1987). Непредсказуемость изменений культуры резко затрудняет или сводит на нет возможности управления процессом культивирования. Поэтому при разведении насекомых желательно иметь несколько отдельных, изолированных друг от друга линий, что позволит обеспечить более равномерное и надежное производство живого материала.
При введении насекомых в культуру возникает также ряд относительно направленных изменении, которые можно назвать доместикацией (А.З.Злотин, 1989). При этом снижается способность к полету вплоть до полной его утраты, изменяется поведение, снижается уровень метаболизма и общая устойчивость к заболеваниям. Однако одновременно могут увеличиваться размеры насекомых и повышаться их продуктивность. Такая доместикация часто полезна для культур, где не предусматривается выпуск разводимых насекомых в природу (производство шелка, переработка навоза и т.д.). Наоборот, для биометода подобные измененные культуры уже нежелательны.
Остановимся на возможных причинах направленных изменений культур насекомых. Конечно, при основании культуры не может быть использован весь генетический "пул" природной популяции. В таких исходно малых популяциях, как лабораторные, возможен дрейф генов, который еще более обедняет генофонд. Лабораторные популяции лишены пресса энтомофагов и заболеваний, т.е. в этих популяциях ослаблен или отсутствует естественный отбор. К тому же, условия при разведении отличаются от естественных значительно большей стабильностью, что уменьшает отсев слабых особей, обладающих слишком строгими требованиями к условиям. Питание насекомых, особенно при их выращивании на несравненно более технологичных питательных средах, существенно отличается от естественного. При культивировании насекомых плотность их популяции всегда существенно выше, чем в природе. Многие насекомые реагируют на такую плотность общим стрессом, значительными изменениями поведения, снижением устойчивости к неблагоприятным воздействиям, серьезными физиологическими и даже морфологическими изменениями (Е.Н. Поливанова, 1989).Измененное питание и повышенная плотность могут быть также факторами отбора особей в нежелательном для нас направлении.
Поэтому исключительно важно постоянно контролировать качество культуры. Прежде всего под качеством культуры следует понимать ее соответствие поставленной цели. Наиболее определенный ответ здесь дают показатели общего выхода продукции при соблюдении соответствующего стандарта и экономическая оценка в сопоставлении расходов и дохода от культуры. Однако в процессе производства большое значение имеют биологические частные показатели, коррелирующие с общей экономической эффективностью. Среди них могут быть частные (результаты измерений определенных морфологических признаков, некоторые количественные характеристики поведения, плодовитость, смертность и т.д.) или же интегральные показатели, объединяющие несколько важных признаков или математические (например, обобщенный показатель качества трихограммы – Ш.М. Гринберг, А.Ф. Руснак, 1986), или по результатам сложного поведения (В.Б. Чернышев и др., 1988).
Исключительно большое значение для создания стабильных лабораторных и промышленных культур с заданными свойствами имеет селекционно–генетическая работа (А.З. Злотин, 1989). Общие принципы селекции насекомых принципиально не отличаются от тех, которые используются в животноводстве.
Мониторинг и антропогенные воздействия
Мониторинг – система наблюдений, позволяющая оценивать состояние биоценоза и давать прогноз его развития. Постановка мониторинга приобретает сейчас особое значение в связи с мощными антропогенными воздействиями, прежде всего с загрязнением среды. В этом отношении насекомые при их широком распространении и чувствительности к изменениям среды являются перспективными объектами (Э.И. Хотько и др., 1982).
Отметим, что при разработке подобного мониторинга следует отличать изменения численности, вызванные антропогенными воздействиями, от ее естественных сезонных и многолетних колебаний.
Загрязнение среды (промышленное химическое и радиоактивное, автомобильные выбросы, использование инсектицидов, гербицидов и минеральных удобрений) заметно отражается на фауне насекомых. Большинство из этих воздействий отбрасывает биоценоз к более ранним стадиям сукцессии и обедняет видовой состав. Вместе с гибелью растений выпадают целые консорции вместе с соответствующими видами насекомых.
Промышленное загрязнение местности, как правило, довольно медленно действует на популяции насекомых. Правда, здесь многое зависит от химической природы загрязняющих веществ поллютантов, на которые насекомые реагируют по–разному. Так, в зоне загрязнения обычно происходит резкое увеличение численности сосущих фитофагов, особенно тлей. Вместе с сосущими насекомыми увеличивается численность их естественных врагов. Основная причина этого явления, скорее всего, – нарушение синтеза белков в тканях растений и как результат накопление в их жидком содержимом свободных аминокислот. Кроме того, сосущие насекомые, в отличие от листогрызущих, практически не страдают от загрязнения поверхности листьев. С ослаблением растений связывается также и увеличение численности подкоровых и стволовых насекомых. Показано, например, что в зоне выброса солей тяжелых металлов возникает мощное развитие ксилофагов (Е.Н. Мозолевская, 1982).
Слишком высокие загрязнения все же подавляют насекомых, сдерживая их размножение. Поэтому в зоне среднего загрязнения часто имеет место максимум численности. Так, численность жука–долгоносика Strophosoma capitatum на определенном расстоянии от источника загрязнения в 25 раз выше, чем на сильно загрязненных участках и в 5 раз – чем на чистых. Подобные же оптимумы по уровню загрязнения были найдены для ряда бабочек (M.V.Kozlov, 1994). Даже непарный шелкопряд – насекомое с мощным биотическим потенциалом – угнетен при большой концентрации промышленных выбросов, например, поблизости от алюминиевого завода г. Братска (Г.И.Голутвин, 1983).
Есть отдельные виды насекомых, численность которых всегда падает под влиянием загрязнений. Так, недалеко от цементных и металлургических заводов резко снижается численность некоторых жужелиц и жуков стафилинов, ряда сеноедов. Среди этих насекомых можно найти виды – индикаторы степени загрязнения местности.
Примерно также изменяется биоценоз под влиянием автомобильных выбросов, часто содержащих тяжелые металлы. Накопление твердых частиц этих выбросов вблизи от дороги приводит к снижению численности форм, обитающих в подстилке и почве, а также листогрызущих энтомофагов. Наоборот, численность получающих питание из более глубоких слоев растительных тканей сосущих фитофагов (тлей, клопов–слепняков) увеличивается. Размножению сосущих вредителей способствует также обогащение растений около шоссе азотистыми соединениями. Вслед за сосущими насекомыми возрастает численность их энтомофагов (Р.О.Бутовский, 1987). Видами – индикаторами подобных воздействий могут быть также некоторые жужелицы и отдельные виды ногохвосток.
В загрязненной радиоактивными отходами местности больше всего страдают объекты, обитающие в подстилке и почве. Сравнительно небольшие дозы радиации могут приводить к некоторому повышению общей жизнеспособности, например, иногда наблюдается повышение процента выхода гусениц непарного шелкопряда из кладок. Более высокие дозы радиации приводят к гибели части гусениц. Однако в целом в зоне повышенной радиоактивности численность популяции непарного шелкопряда не уменьшается, так как заметно снижается зараженность гусениц паразитами. Скорее всего, это происходит потому, что паразиты окукливаются преимущественно в почве, где высока радиация, а непарный шелкопряд – в кронах. Положительно влияет на развитие непарного шелкопряда и изреживание крон из-за ослабления деревьев (Д.А.Криволуцкий и др., 1988). Возможно, что при этом снижается и способность растения противостоять фитофагу.
Большое внимание энтомологов привлекло явление так называемого индустриального меланизма. Оно отмечено примерно у 100 видов бабочек. Наиболее известен полиморфизм окраски березовой пяденицы Biston betularia L., которая имеет две формы: обычную (f.typica), обладающую светлыми крыльями с темными крапинами, напоминающими поверхность ствола березы, и меланистическую (f. carbonaria) с равномерно черными крыльями почти без рисунка. Последняя форма была поймана впервые в промышленном районе около Манчестера. В дальнейшем таких темных бабочек находили преимущественно поблизости от крупных загрязняющих воздух и дающих копоть предприятий. Предлагалась гипотеза, что темная форма менее заметна на закопченных стволах березы, чем исходная светлая, и, следовательно, в меньшем количестве уничтожается птицами (H.B.D.Kettlewel, 1956). Наоборот, на чистых березовых стволах больше преимуществ получает исходная форма со светлыми крыльями. Однако сейчас эта гипотеза оспаривается, так как темная форма преобладает и в некоторых относительно чистых с экологической точки зрения районах. В принципе, потемнение окраски часто коррелирует с повышенной жизнеспособностью и интенсивным метаболизмом.
Помимо бабочек, индустриальный меланизм встречается у жуков (коровки Adalia bipunctata L), некоторых тлей и цикад. Скорее всего, этот меланизм связан с загрязнением местности. Наряду с изменениями окраски возможны и изменения размеров тела и микроструктуры его поверхности.
Насекомые принадлежат к числу индикаторов степени загрязненности воды органическими веществами. Так, личинки цветочных мух Eristalis tenax L., так называемые крыски, – четкий показатель наиболее загрязненного полисапробного водоема. Всем известные красные личинки хирономид типичны для мезосапробных водоемов. Большинство же других водных насекомых могут обитать только в чистых олигосапробных водах (Е.Н. Павловский, С.Г. Лепнева, 1948).
Естественно, что насекомые реагируют и на другие загрязнения воды, в том числе тяжелыми металлами. При длительном загрязнении меняется видовой состав, большинство насекомых погибает. Однако даже и при небольших дозах загрязняющих веществ, и при их непродолжительном воздействии определенным образом изменяется строительное поведение личинок ручейников (В. А. Непомнящих, 1989).
При воздействии на биоценоз инсектицидов резко нарушается его видовая структура, причем больше всего страдают энтомофаги. Фитофаги довольно быстро вырабатывают резистентность по отношению к этим веществам. Помимо инсектицидов на насекомых могут существенно влиять и такие употребляемые в сельском хозяйстве вещества, как гербициды, фунгициды и минеральные удобрения. Под влиянием этих веществ, как и при других загрязнениях, обедняется видовой состав и во многих случаях резко возрастает численность отдельных видов.
Охрана насекомых
Поверхность нашей планеты быстро преобразуется человеком. Естественные биоценозы на громадных пространствах превращаются в пастбища и агроценозы. Часто, особенно в тропических районах, почвы под агроценозами быстро истощаются, но после того, как эти участки забрасывают, прежний биоценоз не может на них восстановиться и они превращаются в подобие пустыни. То же происходит и в результате чрезмерного выпаса скота. Загрязнение и замусоривание земель, не пригодных для хозяйственного использования, неразумное и бесхозяйственное применение удобрений, гербицидов и инсектицидов губят еще сохраняющиеся природные биоценозы. К этому следует добавить и радиоактивное загрязнение многих районов. Масштабы гибели флоры и фауны приняли глобальный характер и сходны уже с теми катастрофическими изменениями, которые имели место в середине медового периода, когда еще однообразные покрытосеменные растения вклинились в естественные сукцессии и прервали их (Меловой биоценотический кризис, 1988).
Разрушение биоценозов приводит к исчезновению многих видов насекомых. По ориентировочной оценке Г.Н.Горностаева (1986), на нашей планете ежедневно исчезает один вид насекомого. Часто биоценотическая роль этих погибающих видов так и остается неизвестной. Помимо научной и эстетической ценности, любой вид может быть использован в качестве опылителя, источника белкового питания или еще для каких–либо других целей. Поэтому крайне важно принять все меры, чтобы сохранить многообразие насекомых (Н.И. Кочетова, 1986). Г.Н.Горностаев (1986) отмечает следующие особенности экологии насекомых, повышающие их уязвимость:
1. Узкий ареал. От хозяйственной деятельности человека в первую очередь должны страдать узкорегиональные эндемики и реликтовые виды.
2. Неспособность к миграциям. В результате деятельности человека, создания агроценозов и населенных пунктов ареал таких слабо мигрирующих насекомых превращается в большое количество мелких островков. Из-за недостаточного обмена генетической информацией, а также из–за лег кости нарушения биоценоза на небольшом участке такие ранее широко распространенные виды оказываются под угрозой исчезновения. Один из наиболее ярких примеров такого вида – бабочка–аполлон.
3. Агрегационные тенденции. Скопления насекомых в одном месте в течение неблагоприятного сезона резко повышают возможность их уничтожения. Так, известно, что бабочка–монарх Danaus plexippus L. во время зимовки в Мексике и Калифорнии скапливается в громадных количествах (сотни тысяч особей) на отдельных деревьях. В настоящее время эти места скоплений бабочек специально охраняются. Другой пример – скопления жуков божьих коровок на склонах гор и сопок в зимнее время. Эти жуки иногда в массе погибают во время лесных пожаров, весенних палов, а также от горных выработок.
4. Приуроченность к эфемерным или редким местообитаниям. Примеры таких биотопов: горные степи, прибрежные дюны или сухие склоны с выходами известняка. В таких местах выявляется своеобразная фауна.
5. Питание на редком растении, монофагия. Возможность исчезновения такого вида не требует объяснений.
6. Водный образ жизни. Многие водные насекомые очень чувствительны к химическим загрязнениям, изменениям концентрации кислорода, температурного режима. Особенно чувствительными оказываются личинки стрекоз и веснянок.
В целом наиболее подвержены вымиранию насекомые К–стратеги, узко специализированные и приспособленные к жизни в строго определенных биотопах.
Часто высказываются соображения, что вымирание ряда преимущественно крупных и яркоокрашенных форм связано с деятельностью коллекционеров. В принципе, это маловероятно, так как громадный, по сравнению с позвоночными животными, биотический потенциал насекомых означает также заранее запрограммированную гибель 95–99% особей от самых разных причин. Эта смертность, конечно, особенно велика на ранних стадиях развития, но погибают в значительном количестве и имаго. Слишком же малая популяция, скорее всего, обречена на гибель, независимо от коллекционеров, по генетическим причинам. "Конечно, случаи хищнического вылова насекомых до полной ликвидации популяций, с разрушением местообитаний и т.д. в принципе возможны, однако подобные действия не имеют ничего общего с коллекционерством и могут квалифицироваться только как преступление" (Т.Н. Горностаев, 1986).
Опыт ряда стран показывает, что даже при современном уровне развития промышленности и сельского хозяйства можно частично сохранить естественные биоценозы благодаря разумному хозяйствованию и природоохранительным мерам. Первым шагом на пути охраны редких и полезных видов является их инвентаризация. В Красную книгу СССР (1984) были внесены 202 вида насекомых, относящихся к 16 отрядам. Конечно, это далеко не все виды, которым грозит уничтожение. Красная книга создается не для специалистов, и в ней упоминаются преимущественно крупные и красивые насекомые, на которых может обратить внимание любой человек. Было разработано законодательство, согласно которому вылов без разрешения насекомых, занесенных в Красную книгу, наказывался денежными штрафами. Величина штрафа зависела от вида насекомого.
Одного включения, в Красную книгу редких и исчезающих видов, конечно, недостаточно для их сохранения. Прежде всего подлежат охране сами биоценозы. Заповедники нашей страны созданы для охраны ландшафтов, а также позвоночных животных, но они могут играть большую роль и в сохранении исчезающих видов насекомых. В противоположном случае возможно исчезновение редких видов и на территории заповедника, как это произошло с аполлоном в подмосковном Приокско–террасном заповеднике. К сожалению, в заповедниках СССР под реальной охраной находилось всего 7 видов насекомых (менее 4% от общего количества видов, занесенных в Красную книгу). Для сравнения: в заповедниках СССР охраняли 54% "краснокнижных" млекопитающих, 70% птиц и 67% рептилий и амфибий.
Охрана насекомых возможна и в пределах национальных парков, памятников природы и даже охотничьих хозяйств. Существенным препятствием к их охране является слабая изученность экологии и распространения многих насекомых. Поэтому необходимо привлекать к изучению редких и исчезающих видов как профессиональных энтомологов, так и квалифицированных коллекционеров. К сожалению, определение большинства насекомых невозможно без вылова и умерщвления некоторого количества особей. Вместе с сохранением видов, занесенных в Красную книгу, может быть спасено и большое количество других более невзрачных насекомых.
Особо перспективная форма сохранения редких и исчезающих видов – это создание на неудобных землях микрозаповедников (более точно, – микрозаказников) площадью 1–15 га. Честь создания первых микрозаповедников в России принадлежит В.С.Гребенникову, много лет изучавшему биологию шмелей и других опылителей.
Однако, создавая такие микрозаповедники, следует помнить, что биоценозы подвержены сукцессиям, причем каждый из видов принадлежит к ее определенному этапу. На большой территории сукцессия не может проходить строго синхронно, благодаря чему в целом сохраняется весь набор видов. На небольших же участках неприкосновенность не дает гарантии полного сохранения исходной флоры или фауны, особенно при малочисленных популяциях насекомых (В.С.Мурзин, В.Д.Кобрин, 1993). В ряде случаев сохранению фауны насекомых может способствовать частичное хозяйственное использование территории, например кошение трав на части территории или же умеренный выпас скота.
ГЛАВА 5. ЭКОЛОГИЧЕСКАЯ ЭВОЛЮЦИЯ НАСЕКОМЫХ
Эволюция морфологических структур, в отличие от экологической эволюции, относительно хорошо документирована. Все морфологические признаки легко распознаются и их можно сравнивать как на современном материале, так и по ископаемым остаткам. Однако даже морфологическая эволюция во многом является предметом спора.
Экологическая же эволюция может быть представлена только как цепь более или менее спекулятивных догадок. Об образе жизни вымерших форм можно все же в какой–то мере судить по их морфологии, так как сходный образ жизни приводит к появлению относительно сходных жизненных форм.
В конце учебника по экологии насекомых целесообразно привести некоторые соображения об экологической эволюции насекомых, чтобы подвести итог всему сказанному выше и дать экологический портрет класса насекомых в динамике.
Одна из основных тенденций эволюции животного мира – переход от первичного для всего живого водного образа жизни к наземному, а для ряда групп – также и завоевание воздушной среды. У насекомых первый этап связан с появлением трахейной системы, а второй – крыльев.
1. ПРЕДКИ НАСЕКОМЫХ И ИХ МЕСТОБИТАНИЕ
Наиболее ранние остатки древних, вероятно способных к полету крылатых насекомых датируются концом нижнего карбона (А.П. Расницын, 1980). Первичнобескрылые же насекомые, к которым по современной классификации относятся только отряды Archaeognatha и Thysanura, а также вымершие Monura, описаны из отложений верхнего карбона. Правда, в девонских отложениях найдены остатки членистоногого, которое может принадлежать к Archaeognatha.
У всех насекомых отсутствуют постоянные в течение всего цикла развития жабры, и дыхание осуществляется, за редкими исключениями, через трахейную систему. У водных личинок и куколок последняя может быть закрытой, и они дышат с помощью жабер. Следовательно, предками всех насекомых, скорее всего, были наземные членистоногие с приспособленной к дыханию в воздухе трахейной системой . Таким образом, между предковой формой, вышедшей из воды, и крылатыми насекомыми должен быть значительный интервал времени, за который образовалась трахейная система и появились крылья.
Вопрос об облике предков насекомых представляется спорным. В настоящее время наиболее распространены две гипотезы. Согласно одной из них предками насекомых были древние многоножки, а другой – ракообразноподобные предки (но не обязательно ракообразные!). Важное для представления об экологической эволюции насекомых, отличие первой гипотезы от второй заключается в различной исходной форме тела, а следовательно, разном исходном образе жизни. Длинное, легко изгибающееся тело многоножек дает преимущества при обитании в растительном мусоре или в ходах, уже сделанных другими животными. Более же короткое и компактное тело ракообразноподобных членистоногих приспособлено к открытой жизни в воде или на поверхности суши и лишь к временному использованию укрытий.
Представления о "многоножкообразных" предках насекомых очень широко распространены (М.С.Гиляров, 1949;V.Graber, 1891) и имеют солидную морфологическую основу.
Нам представляется уместным напомнить читателю геологические эры и периоды. К палеозойской эре относятся периоды: кембрий, ордовик, силур, девон, карбон, пермь. К следующей за ней мезозойской – триас, юра, мел. К кайнозойской: палеоген, неоген, четвертичный (современный) периоды.
Однако в более поздних работах показано, что многоножки и три близких к ним отряда энтогнатных первичнобескрылых (Protura, Diplura, Collembola) существенно отличаются от насекомых, во-первых, тем, что у первых протоцеребрум сдвинут в отношении других отделов мозга назад, а у насекомых сохраняется в переднем, т.е. в примитивном положении (А.П. Расницын, 1976). Во-вторых, метатрохофоральные начальные стадии онтогенеза у этих групп принципиально различны (О.А.Мельников, 1974), что указывает на дивергенцию их предков еще во время обитания в воде.
Согласно другой гипотезе предками насекомых были древние ракообразноподобные формы (R.Snodgrass, 1956; A.G.Sharov, 1966). Перечислим основные признаки, общие у ракообразных и насекомых: во-первых, это сравнительно короткое и компактное тело, во-вторых, наличие отдельных грудного и брюшного отделов, что отсутствует у многоножек. Грудной отдел несет ходильные или плавательные конечности, брюшко же само может участвовать в плавании. Подгибание и распрямление брюшка приводит к резкому скачкообразному продвижению в воде. В-третьих, это округлое или слегка сплюснутое с боков тело. Такая конфигурация тела создает максимальные возможности для прыжка в воде с помощью резких движений брюшка. Подобным же образом ударяя брюшком о субстрат, прыгают и современные наземные Archeognatha, по–видимому, наиболее близкие к предкам всех насекомых. В–четвертых, это мандибулы, приспособленные к пережевыванию разнообразной пищи. Для ракообразных типична миксофагия, включающая питание отмершими растительными и животными остатками, а также иногда использование в пищу живых растений и животных.
Все эти признаки являются отличной предпосылкой для выхода на сушу. Действительно, среди ракообразных многие группы обитают практически все время на суше около воды (некоторые бокоплавы и крабы) или становятся полностью сухопутными (мокрицы).
Несомненно, что предки насекомых, а, может быть, уже сформировавшиеся древнейшие насекомые вышли из воды на берег моря. Однако морской берег может быть разных типов. Первый тип – вязкий берег, складывающийся из ила и песка. Здесь благодаря мелководью, далеко уходящему в море, волны гаснут, не доходя до берега. В начале палеозоя такие мелководья должны были быть очень широко распространены, так как отсутствие развитого растительного покрова суши приводило к ее мощной водной эрозии и селевым стокам вдоль побережья. На мелководье и по его краям возникали насыщенные органикой скопления водорослей и бактерий – так называемые "маты", на поверхности которых шел интенсивный фотосинтез. Именно в таких местах в конце силура появились первые высшие растения.
Дата добавления: 2015-05-16; просмотров: 868;