Системы счисления. Арифметические основы вычислительной техники

АРИФМЕТИЧЕСКИЕ И ЛОГИЧЕСКИЕ ОСНОВЫ

ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

 

Арифметические основы вычислительной техники

Системы счисления

В ЭВМ информация всегда представляется в виде чисел записанных в той или иной системе счисления. Выбор системы счисления - один из важнейших вопросов. От правильности его решения зависят такие характеристики ЭВМ как скорость вычислений, сложность алгоритмов реализации арифметических операций и другие. Система счисления - совокупность приемов и правил для записи чисел цифровыми знаками.

Любая система счисления должна обеспечивать:

§ возможность представления любого числа в рассматриваемом диапазоне величин;

§ единственность этого представления;

§ простоту оперирования числами.

Различают два типа систем счисления - непозиционные и позиционные.

Непозиционная система счисления - система, для которой значение символа не зависит от его положения в числе. Примером может служить система счисления с одной цифрой 1. Для записи любого числа в ней необходимо написать количество единиц равное числу. Другой пример - это римская система счисления.

Позиционной системой счисления называется система записи любых по величине чисел ограниченным числом символов.

Основание (базис) r позиционной системы счисления - максимальное количество различных знаков или символов, используемых для изображения числа в данной системе счисления. Таким образом, основание может быть любым числом кроме 1 и бесконечности.

Любое число в системе счисления с основанием r может быть записано в общем виде:

A=an·rn+ an-1·rn-1+...+a1·r1+a0·r0+ a-1·r--1+...+a-rn-1·r-(rn-1)+a-rn·r-rn, (1)

или

, (2)

где любая разрядная цифра aiÎ{0,…,r-1}, a ri - вес соответствующего разряда.

Запись числа в форме (1) назовем записью числа в развернутой форме. Свернутой формой записи чисел называется запись чисел в виде

A=a1a2 … ak.

Для любой системы счисления основание представляется как 1 (один) и 0 (ноль).

Например: 9 1 F 7

+1 +1 +1 +1

1010 102 1016 108

Вес разряда pi числа выражается соотношением:

pi = ri /r0 = ri ,

где i - номер разряда при отсчете справа налево.

Если в i-м разряде накопилось значение единиц, равное или большее r, то должна происходить передача единицы в старший i+1 разряд. При сложении такая передача информации называются переносом. При вычитании передача из i+1 разряда в i-й – заем.

Длина числа – количество позиций (разрядов) в записи числа. В технической реализации под длиной числа понимается длина разрядной сетки.

Диапазон представления чисел в заданной системе счисления – интервал числовой оси, заключенный между максимальным и минимальным числами, представленными при заданной длине разрядной сетки.

В вычислительной технике для представления данных и выполнения арифметических операций над ними удобно использовать двоичную, восьмеричную и шестнадцатеричную системы счисления. Ниже коротко остановимся на них.








Дата добавления: 2015-05-05; просмотров: 1068;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.