ВОЗБУДИТЕЛЬ ТУБЕРКУЛЕЗА, СТРОЕНИЕ, ИЗМЕНЧИВОСТЬ МИКОБАКТЕРИЙ ТУБЕРКУЛЕЗА 11 страница
Определение спектра и степени чувствительности микобактерии туберкулеза к противотуберкулезным препаратам имеет важное значение для тактики химиотерапии больных, контроля за эффективностью лечения и определения прогноза заболевания. Степень лекарственной чувствительности микобактерии туберкулеза определяется в соответствии с установленными критериями, которые зависят как от противотуберкулезной активности лекарственного препарата, так и его концентрации в очаге поражения, величины максимальной терапевтической дозы, фармакокинетики препарата и др.
Определение лекарственной чувствительности в настоящее время проводится бактериологическими методами — методом разведений на плотной питательной среде и методом разведений (или абсолютных концентраций) на жидких питательных средах. Имеется много модификаций обоих методов. В качестве унифицированного в России применяют рекомендованный Комитетом по химиотерапии ВОЗ метод определения лекарственной чувствительности микобактерии на плотной среде Левенштейна — Йенсена (без крахмала), в которую перед свертыванием добавляют различные концентрации препаратов. Минимальный набор состоит из 2—3 пробирок с разными концентрациями каждого из используемых в данной клинике препаратов, одной контрольной пробирки со средой без препарата.
Этот метод достаточно точен. Он позволяет применять патологический материал, содержащий любое количество микобактерии, поскольку для определения лекарственной чувствительности используются микобактерии, предварительно выделенные из патологического материала. Поскольку сроки выделения возбудителя на питательных средах составляют не менее 1—1,5 мес, результаты определения лекарственной чувствительности указанным методом можно получить не ранее чем через 2—2,5 мес после забора материала. В этом заключается один из основных недостатков метода. Описанный метод определения лекарственной чувствительности микобактерий после выделения их чистой культуры получил название непрямого метода.
При массивном бактериовыделении (не менее 1—5 микобактерии в каждом поле зрения) применяют прямое определение лекарственной чувствительности при выделении возбудителя непосредственно из патологического материала. Для этого используют метод глубинного посева и метод культивирования на стеклах в жидких питательных средах. Эти методы более трудоемки, требуют дополнительного приготовления мазков, окраски и микроскопирования последних и, кроме того, менее точны, так как невозможно дозировать засев микобактерии. Однако результаты можно получить в более короткие сроки (через 12 дней). Практикуется также прямое определение лекарственной устойчивости на плотных средах, в этом случае результаты можно получить через 3 нед.
Лекарственно-чувствительные штаммы дают рост на средах с препаратами в пределах определенной концентрации, различной для каждого препарата. Штаммы, которые растут при соответственно более высоком содержании этих препаратов в питательной среде, относят к лекарственно-устойчивым. Устойчивость определяют по наличию макроскопически видимого роста на плотных и микроскопического роста — на жидких средах.
Устойчивость данного штамма в целом выражается той максимальной концентрацией препарата (количество микрограмм в 1 мл питательной среды), при которой еще наблюдается размножение микобактерии (по числу макроколоний при посеве на плотные среды и микроколоний при посеве на жидкие среды). Лекарственно-устойчивые микроорганизмы способны размножаться при таком содержании препарата в среде, которое оказывает на чувствительные особи бактериостатическое или бактерицидное воздействие. При определении лекарственной устойчивости микобактерии на плотных средах культура считается чувствительной к той концентрации препарата, которая содержится в среде, если число колоний микобактерии, выросших на одной пробирке с препаратом, не превышает 20. Только при наличии более 20 колоний культура расценивается как устойчивая.
Для различных препаратов установлена определенная предельная концентрация, при которой еще наблюдается размножение чувствительных к этому препарату микобактерии. Границей, или критерием устойчивости, называют те первые концентрации препарата в питательной среде, выраженные в микрограммах на 1 мл, при которых начинают размножаться устойчивые особи. Для плотной среды Левенштейна — Йенсена установлены следующие концентрации (мкг/мл): стрептомицин — 5; изониазид — 1; этионамид — 30; протионамид — 30; циклосерин — 50; канамицин — 30; фло-римицин (виомицин) — 30; тиоацетазон (тибон) — 2; этамбутол — 2; рифампицин — 20.
Наряду с анализом лекарственной чувствительности все выделенные при посеве медленно растущие штаммы микобактерии подлежат первичной идентификации для определения их видовой принадлежности <М. tuberculosis, М. bovis, М. africanum, М. microti), так как принадлежность возбудителя к тому или иному виду существенно влияет на тактику химиотерапии, прогноз заболевания и др. Одним из основных лабораторных тестов, позволяющих дифференцировать М. tuberculosis и М. bovis и микобактерии всех других видов, служит ниациновый тест. Он основан на уникальной способности микобактерии человеческого типа синтезировать ниацин (никотиновую кислоту) в значительно больших количествах, чем микобактерии бычьего типа и нетуберкулезные микобактерии.
В случае выделения нетуберкулезных (атипичных) микобактерии, как медленно, так и быстро растущих, необходимо прежде всего правильно оценить их роль в заболевании, а затем идентифицировать их. Для установления диагноза микобактериоза надо многократно повторно выделить один и тот же вид микобактерии. Все туберкулезные микобактерии подлежат специальному изучению с помощью бактериологических и биохимических методов идентификации. Порядок и основные методы идентификации определены приказом МЗ СССР № 558 от 8 июня 1978 г. «Об унификации микробиологических методов исследования при туберкулезе», а также изложены в методических рекомендациях «Бактериологическая и биохимическая идентификация микобактерии» (Л., 1980).
Биологическая проба. При отрицательных результатах бактериоскопии и посева материала, исследуемого на микобактерии туберкулеза, если все же подозревается туберкулез, ставят опыты на животных (так называемая биологическая проба). Это наиболее чувствительный метод выявления возбудителя туберкулеза. Самым чувствительным к туберкулезной инфекции лабораторным животным является морская свинка. Считается, что заражение морской свинки позволяет диагностировать туберкулез даже при наличии в материале, использованном для заражения, 1—5 микробных клеток.
Биологический метод широко применяется в диагностике туберкулеза со времени открытия возбудителя этой инфекции. Он не потерял своей ценности и в настоящее время. Более того, сейчас этот метод с успехом применяется для выявления не только типичных неизмененных, но и разнообразных биологически измененных форм возбудителя, в частности L-трансформированных и фильтрующихся форм. Кроме того, этот метод является основным при определении видовой принадлежности микобактерии, их вирулентности, изучении патогенное™ атипичных культур. Он широко используется для воспроизведения туберкулеза отдельных органов, исследования аллергических реакций, иммунитета и эффективности химиотерапии при туберкулезе. В последние годы метод применяется при проведении биологических пассажей в процессе изучения биологически измененных форм возбудителя в целях получения биологической реверсии.
При любом методе заражения морских свинок микобактериями туберкулеза у животных развивается генерализованный туберкулезный процесс, заканчивающийся гибелью. Однако следует иметь в виду, что возбудители туберкулеза, устойчивые к препаратам изоникотиновой кислоты, вследствие снижения или потери вирулентности могут не вызывать заболевание у морских свинок и дать отрицательные результаты биологической пробы при одновременном наличии роста на питательных средах при посеве. Это обстоятельство диктует необходимость дифференцированного подхода к результатам биологической пробы и одновременного использования метода посева при проведении заражения животного в диагностических целях.
Для повышения частоты обнаружения микобактерии туберкулеза в патологическом материале многие авторы используют, помимо подкожного, интратестикулярное заражение. При этом в патологическом материале удается чаще выявлять изониазидоустойчивые слабовирулентные микобактерии. Кроме того, для повышения чувствительности биологического метода рекомендуется искусственно снижать естественную резистентность морских свинок ежедневным введением больших доз кортизона (12,5 мг), что позволяет повысить результативность биологической пробы на 15—29% (по данным разных исследователей). Наконец, результативность биологической пробы можно повысить, применяя метод последовательных биологических пассажей. Для этого заражение каждой последующей морской свинки производится гомогенатом органов от предыдущего животного, использованного в биологической пробе. По мере увеличения числа пассажей нарастает выраженность специфических изменений в органах.
Следует подчеркнуть, что особую ценность биологическая проба представляет для диагностического исследования олигобациллярного материала.
Перед заражением морским свинкам с массой 200—250 г ставят реакцию Манту, вводя 0,02 мл альттуберкулина Коха внутрикожно в наружную поверхность бедра, освобожденную от волосяного покрова; контроль — введение такого же количества бульона в другую лапку. При отрицательной реакции через 48 ч свинку можно брать в опыт. Для заражения в диагностических целях можно использовать различный патологический материал: мокроту, мочу, промывные воды, отделяемое ран и др. Исследуемый материал обычно обрабатывают 3% раствором серной кислоты так же, как и для посева. Затем осадок 2 или (лучше) 3 раза отмывают стерильным изотоническим раствором NaCl и центрифугируют. Такое отмывание является обязательной процедурой, поскольку при попадании кислоты животному под кожу может развиться некроз. К отмытому осадку добавляют изотонический раствор NaCl и вводят эту смесь под кожу правой паховой области. За свинками проводят систематическое наблюдение, проверяя появление местного инфильтрата в месте введения материала, изъязвление этого инфильтрата, состояние регионарных лимфатических узлов и места введения материала; повторно ставят реакцию Манту. То же повторяют через 6 нед и далее. При положительных туберкулиновых пробах и наличии местных изменений свинок забивают через 1—1,5 мес, при отсутствии признаков развивающегося туберкулеза — через 3 мес.
Туберкулиновые пробы при наличии туберкулезного процесса становятся положительными через 2 нед — 1 мес после заражения.
На вскрытии свинок, погибших от туберкулеза, наблюдается картина генерализованного туберкулеза. Если при заражении в материале были слабовирулентные микобактерии туберкулеза, то развитие процесса может ограничиться увеличением лимфатических узлов и единичными очажками в органах. Во время вскрытия делают мазки-отпечатки из органов для бактериоскопических исследований. Кроме того, кусочки лимфатических узлов, селезенки, печени и легких вырезают стерильным инструментом, помещают в стерильную ступку, гомогенизируют и засевают на плотные питательные среды. Посевы производят обязательно при отсутствии в органах макроскопически видимых изменений туберкулезного характера. Кроме того, в сомнительных случаях проводят гистологическое исследование тканей.
Для оценки распространенности и характера туберкулезного поражения у морских свинок предложено несколько схем учета макроскопических изменений в органах. Наибольшее распространение в нашей стране получили схемы, разработанные М. В. Триус и Ю. К. Вейсфейлером. По этим схемам специфические изменения в органах и лимфатических узлах оцениваются в зависимости от степени их выраженности плюсами, которые затем переводятся в цифровые показатели.
Микробиологическая диагностика L-трансформированных и фильтрующихся вариантов микобактерии. Все изложенное выше касается разнообразных методов выявления и идентификации классических бактериальных форм возбудителя туберкулеза, не учитывая многообразные формы, возникшие в результате морфологической, тинкториальной и биологической изменчивости микобактерии.
В настоящее время традиционные методы выделения микобактерии туберкулеза все меньше удовлетворяют нужды клиники, так как информативность микробиологических исследований явно недостаточна. Применяемые методы малоэффективны и не позволяют составить представление об истинном состоянии микобактериальной популяции, вегетирующей в организме больного. Это объясняется, с одной стороны, недостаточной чувствительностью ряда методов, а с другой (в значительно большей степени), тем, что большинство таких методов не позволяет выявить возбудитель, находящийся в L-трансформированном состоянии.
L-трансформация — закономерный этап жизненного цикла микобактерии. L-формы — это варианты бактерий с дефектом клеточной стенки. Им придают особое значение в патологии человека и животных в связи с их способностью длительно существовать в макроорганизме и реверсировать в исходный вид с восстановлением свойственной ему вирулентности. Возможность попеременного или одновременного существования возбудителя в бактериальной и L-форме не только значительно затрудняет диагностику, но и влияет на развитие эпидемического процесса, создавая ложное впечатление об абациллировании источников и стерилизации очагов инфекции.
Таким образом, результаты бактериологических исследований, рассчитанных на выделение только бактериальных форм возбудителя, не могут служить основанием для исключения туберкулезной инфекции и должны дополняться данными, полученными специальными методами, которые направлены на выявление L-форм микобактерии. Последние, как известно, являются закономерно существующей формой возбудителя при разных клинических проявлениях туберкулезного процесса, а также основной формой персистирования микобактерии.
Установлено, что L-трансформация микобактерии закономерна и при использовании специальных методов исследования она может быть выявлена. Из-за биологических особенностей L-форм, для которых характерны резко измененная морфология бактериальных клеток и сниженный метаболизм, выделение их требует специальных методов культивирования и идентификации. L-формы могут обнаруживаться в виде гигантских зернистых тел, скоплений различных по размеру, гомогенности и оптической плотности шаров, гранул, сферопластоподобных образований, светопреломляющих тел и др. L-фсрмы и близкие к ним варианты возбудителя туберкулеза характеризуются повышенной хрупкостью и требуют применения особых методов выделения и условий культивирования: щадящих методов обработки материала, элективных питательных сред, наличия нативных белков и осмотических стабилизаторов.
L-формы выделяются преимущественно у больных, недавно прекративших выделять бактериальные формы. У данного контингента больных с сохранившимися полостями деструкции и воспалительными изменениями в легочной ткани выделение L-форм продолжается еще в течение 3—4 мес и более после прекращения выделения бактериальных форм. Таким образом, целенаправленные поиски L-форм микобактерии показаны у больных, не выделявших или прекративших выделять бактериальные формы, но имеющих явные клинические признаки активного туберкулезного процесса. К таким признакам относится наличие участков деструкции легочной ткани, каверн с неравномерно широкими стенками и с эволютивными воспалительными изменениями в окружающей легочной ткани.
Поиски L-форм микобактерии туберкулеза должны проводиться повторно, многократно, так как выделение их носит периодический характер. В настоящее время разработаны и применяются разнообразные методы микробиологической диагностики L-трансформиро-ванных вариантов: бактериоскопические, культуральные, биологические, серологические, иммунофлюоресцентные, гистологические. Разработаны методические основы культурального выделения L-фсрм, сконструированы элективные питательные среды, предложены методы обработки материала, подобраны адекватные детергенты и осмотические стабилизаторы, разработана схема посева и контролей. Предложены методы окраски L-форм в чистой культуре и патологическом материале; разработаны стандартные и ускоренные методы реверсии и др. Все это позволяет выделять L-формы из разнообразного патологического материала и устанавливать их видовую специфичность.
Основные принципы выделения и идентификации L-форм изложены в методических рекомендациях «Выделение L-форм микобактерии туберкулеза из патологического материала» (М., 1984) и «Экспресс-индикация L-форм микобактерии туберкулеза методом иммунофлюоресценции» (Минск, 1981).
Исследованиями последних лет (А. Г. Хоменко, В. И. Голышев-ская) установлено, что при многих клинических проявлениях туберкулеза (особенно на фоне длительной комбинированной химиотерапии) в организме больных и экспериментальных животных обнаруживаются и ультрамелкие формы возбудителя, проходящие через бактериальные фильтры. Частота обнаружения этих микроорганизмов варьирует в зависимости от формы процесса и особенно от лекарственного режима.
Для выделения ультрамелких форм разработаны культуральный и биологический методы. Основной принцип этих методов заключается в том, что исследованию подвергается материал, последовательно профильтрованный через мембранные фильтры с размером пор 0,65; 0,45 и 0,22 мкм. При этом исследуемый субстрат полностью очищается от бактериальных форм возбудителя, осколков микобактерии и других вариантов изменчивости, в материале остаются только фильтрующиеся формы. Полученный фильтрат засевают на специальные питательные среды или вводят морской свинке. Результаты оценивают по данным бактериоскопии мазков, приготовленных из культивированного фильтрата или в результате реверсии возбудителя в бактериальную форму.
4.7. МОРФОЛОГИЯ КРОВИ ПРИ ТУБЕРКУЛЕЗЕ
Различные формы туберкулеза при разной реактивности организма вызывают значительные отклонения в лейкоцитарной формуле и количестве лейкоцитов. Поданным Н. А. Шмелева (1959), число лейкоцитов у больных туберкулезом чаще (58%) достигает 6в109/л, при острых и тяжелых формах процесса — 12—15в109/л (35% случаев). Число лейкоцитов более 15в109/л встречается редко (3% больных), и в этих случаях надо искать другое заболевание или сочетание его с туберкулезом. По числу лейкоцитов можно судить о степени реакции отдельных частей кроветворной системы, поэтому при туберкулезе, как и при других заболеваниях, этот показатель не следует оценивать «оторванно» от лейкоцитарной формулы.
У взрослых туберкулезный процесс обычно вызывает увеличение числа палочкоядерных нейтрофилов. У больных с инфильтративны-ми и очаговыми формами без распада отмечается палочкоядерный сдвиг (7—10%). При наличии деструкции легочной ткани количество палочкоядерных нейтрофилов может доходить до 10—20%. Значительное увеличение сдвига влево отмечается при обострении фиб-розно-кавернозного туберкулеза, а также при распространенных процессах с явлениями распада. В этих случаях процент палочкоядерных может достигать 20—30, иногда появляются мета- и про-миелоциты (0,5—0,25%).
При туберкулезе изменяется и характер зернистости нейтрофилов. Вместо обычной тонкой может появиться грубая патологическая зернистость, которая имеет не меньшее значение, чем изменение ядра. Для определения числа нейтрофилов с патологической зернистостью мазки крови надо окрашивать в буферном растворе. В норме до 6% нейтрофилов имеет патологическую зернистость. Увеличение в периферической крови числа нейтрофилов с патологической зернистостью указывает на истощение пула миелоцитов нейтрофильного ряда и образование из них менее дифференцированных клеток костного мозга. У больных с тяжелыми формами туберкулеза почти все нейтрофилы (80—90%) могут содержать патологическую зернистость, которая при затихании патологического процесса обычно сохраняется дольше других изменений гемограммы, свидетельствуя о неполном восстановлении функции костного мозга.
Клинически выраженный туберкулез протекает с нормальным числом эозинофилов в крови. Небольшая эозинофилия при отсутствии сдвига влево в сочетании с лимфоцитозом сопровождает благоприятно протекающие туберкулезные процессы. Гипоэозинофилия и особенно анэозинофилия отмечаются при тяжелом состоянии больных.
Число узкоплазменных лимфоцитов повышается в период ранней туберкулезной интоксикации, в начальный период первичного туберкулеза. Высокое число лимфоцитов Н. А. Шмелев (1959) связывает с реактивностью раннего периода первичной инфекции. Увеличение данного показателя в крови наблюдается и при затихании вспышки, инфильтративном и очаговом туберкулезе легких. При прогрессировании болезни он снижается вплоть до выраженной лим-фопении (10% и менее). Это закономерное явление, связанное с угнетением лимфопоэза.
Нормальное количество моноцитов отмечается у 66% больных туберкулезом, ниже нормы — у 22%. Стойкое увеличение показателя бывает при свежей гематогенной диссеминации, которая может иметь место во всех фазах туберкулезного воспаления. В этих случаях определяется от 10 до 20% моноцитов при повторных анализах крови. Резкое снижение количества моноцитов может быть при тяжелом течении первичного туберкулеза и казеозной пневмонии [Тимашева Е. Д., 1947]. Колебания в содержании этих клеток зависят и от других агентов, вызывающих раздражение ретикуло-гистиоцитарной системы. Некоторую роль в данном процессе может играть также непереносимость химиопрепаратов, вызывающих побочные реакции, которые протекают с увеличением количества аг-ранулоцитарных форм, в том числе моноцитов [Ковязина А. И., 1970].
При обычном исследовании крови базофилы встречаются у 0,5— 1,8% больных. Н. А. Шмелев и А. И. Ковязина (1971), А. К. Герман и Б. П. Ли (1970) отметили увеличение абсолютного числа базофилов у 30% больных с активной формой туберкулеза легких. Способность базофильных лейкоцитов изменять свои морфологические свойства при реакции антиген — антитело широко используется в серологи-
5—1213
ческом тесте Шелли для выявления антител к различным (в первую очередь лекарственным) антигенам [Тимашева Е. Д., Ковязина А. И., 1969, и др.].
Состав красной крови у большинства больных туберкулезом остается в пределах нормы. Анемии отмечаются при первичной казеозной пневмонии, милиарном туберкулезе [Alterescu R. et al., 1975; Payl J. et al., 1977] и некоторых формах диссеминированного туберкулеза [Тимашева Е. Д., 1963]. Число эритроцитов при этих формах падает до 1—2,5в1012/л, уровень гемоглобина — до 50 — 60 г/л.
В процессе химиотерапии могут возникать разнообразные изменения показателей крови, обусловленные токсическим и аллергическим воздействием препаратов на организм больного. Наиболее часто наблюдается реакция эозинофилов. Их число возрастает при лечении антибиотиками (стрептомицин, виомицин и канамицин, реже циклосерин и рифампицин). Гиперэозинофилия иногда может служить предшественником агранулоцитарных реакций, проявляющихся уменьшением числа гранулоцитов, нарастающим падением числа лейкоцитов, относительным повышением числа лимфоцитов и моноцитов и появлением в гемограмме плазматических и рети-кулогистиоцитарных элементов. При использовании рифампицина, протионамида, этионамида и ПАСК наблюдается повышение процента моноцитов (до 10—18). При применении изониазида, ПАСК, стрептомицина, циклосерина и рифампицина описаны тяжелые осложнения в виде гемолитических и апластических анемий [Аркавина Э. А., Берлинер А. А., 1971]. Гемолитические анемии могут развиваться при повторном и интермиттирующем приемах рифампицина, протекать с острой почечной и печеночной недостаточностью [Nastase М. et al., 1975; Miyachi S. et al., 1982]. Кроме того, из гематологических осложнений при лечении рифампицином и этам-бутолом описаны тромбоцитопении [Calietti F. et al., 1978; Rabinovitz M. et al., 1982].
Лейкемоидные реакции, связанные с туберкулезной инфекцией, встречаются редко и наблюдаются преимущественно при диссеми-нированных формах в фазе острой диссеминации, протекающей с поражением костного мозга, селезенки и печени, лимфатических узлов, брюшной полости, и при остром туберкулезном сепсисе. В нашей стране они описаны Е. М. Тареевым (1948), Е. Д. Тимашевой (1963), за рубежом — Н. Reinwein. W. Rosing (1938), J. Tripatti и соавт. (1984).
Различают два типа реакций: гиперпластические (собственно лейкемоидные) и гипопластические. При первом типе число лейкоцитов может достигать 20—30в109/л. Наряду с моноцитозом выявляются лимфопения, резкий сдвиг влево нейтрофилов с появлением единичных миелоцитов и промиелоцитов. Со стороны красной крови отмечается гипохромная анемия с уменьшением числа эритроцитов до 2—2,5в1012/л. Лейкемоидные реакции гиперпластического типа большей частью преходящи, иногда наблюдается цикличность в их течении, которую можно связать с волнами гематогенной диссеми-
нации. Гипопластический тип реакции наблюдается преимущественно при остром туберкулезном сепсисе, но иногда может возникать и у больных с диссеминированной формой, милиарным туберкулезом [Cordier J. Е. et al., 1978]. В этих случаях для гемограммы характерна стойко выраженная тромбоцитопения 20,0—30,0»109/л> лейкопения 1—2в109/л с нейтропенией и относительным лимфоцитозом, иногда граничащие с агранулоцитозом, в красной крови — резко выраженная анемия: эритроциты до 1,5—2»1012/л, количество гемоглобина падает до 40,0—50,0—60,0 г/л.
С целью уточнения характера реакции крови и для ранней диагностики милиарного туберкулеза (протекающего с поражением гемопоэтической системы) рекомендуется производить цитологическое исследование костного мозга, лимфатических узлов. Это дает возможность в случаях туберкулезной этиологии процесса обнаружить специфические элементы туберкулезной гранулемы и микобактерии туберкулеза.
4.8. ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ
Инструментальные методы исследования находят все большее распространение в диагностике и дифференциальной диагностике туберкулеза. Среди них эндоскопические исследования бронхов занимают ведущее место, так как в большинстве случаев они сочетаются с комплексом дополнительных микрохирургических вмешательств биопсийного характера. Современная бронхология располагает большим числом разнообразных эндобронхиальных диагностических манипуляций для своевременного распознавания различных патологических процессов как в бронхах, так и непосредственно в легочной ткани. С помощью этих методов можно достаточно эффективно оценивать визуально изменения как в крупных, так и в более мелких бронхах, а также получить биопсийный материал для морфологического и бактериологического исследования по существу из любого участка терминальных бронхов или легкого.
Успех инструментальной диагностики заболеваний органов дыхания и средостения в каждом конкретном случае зависит от правильного выбора метода исследования. При этом необходимо помнить, что инструментальные методы диагностики не всегда являются безобидными и нетравматичными для больного, поэтому всегда следует руководствоваться принципом — от простого диагностического вмешательства к сложному.
Бронхоскопия. Этот метод позволяет осмотреть внутреннюю поверхность бронхов, изучить состояние слизистых оболочек крупных бронхов, определить в них патологические изменения. Успешное проведение брохоскопии в значительной степени зависит от того, насколько хорошо проведено обезболивание. Выбор последнего обусловливается общим состоянием больного, наличием сопутствующих заболеваний, характером и продолжительность эндоскопического вмешательства, арсеналом необходимой аппаратуры и инструментария, опытом эндоскописта и анестезиолога.
5*
Для местной анестезии слизистой оболочки глотки, гортани, трахеи и бронхов используют 2—3% раствор дикаина, 5—10% раствор новокаина, смесь Гирша и др. Местная анестезия не может полностью снять болевые ощущения, кашлевой рефлекс, а также психические переживания, связанные с бронхоскопией, особенно если эндоскопия бронхов сочетается с различными эндобронхиаль-ными манипуляциями биопсийного характера. Для проведения общего обезболивания широко используют соли барбитуровой кислоты: гексенал, тиопентал-натрий или небарбитуровый кратковременный анестетик сомбревин (эпонтол). Из мышечных релаксантов чаще применяют листенон, миорелаксин, дитилин. Для проведения поднаркозной бронхоскопии необходим дыхательный бронхоскоп системы Фрид ел я.
Бронхоскопическое исследование производят натощак. Премеди-кация обычно состоит из внутримышечного (за 20—40 мин) или внутривенного (за 5—7 мин) введения атропина или метацина в дозе 0,5—1 мл 0,1% раствора. Введение в наркоз осуществляется 1—2,5% раствором гексенала и тиопентал-натрия в дозе 150—300 мл ребенку и 500—700 мл взрослому. Сомбревин вводят внутривенно в дозе 10—15 мл. В период введения анестетиков больные дышат чистым кислородом через маску. Анестетики вводят медленно до наступления наркоза стадии Ь—IIIi, что характеризуется потерей сознания и сохранением ровного дыхания. Для предотвращения мышечных болей после исследования внутривенно вводят 3—5 мл антидеполяризующего релаксанта тубокурарина хлорида (тубарин), а затем через 30—50 с инъекцируют 100—120 мл дитилина (сук-цинилхолин, листенон, миорелаксин и др.). После наступления мышечной релаксации через наркозную маску в течение 5—10 с больного насыщают кислородом и с помощью ларингоскопа через голосовую щель в трахею вводят тубус дыхательного бронхоскопа. Искусственная вентиляция легких поддерживается в течение всего исследования ритмичным сокращением дыхательного мешка, соединенного с баллоном кислорода, или методом эжекционной подачи кислородно-воздушной смеси через специальную иглу, вмонтированную в головку бронхоскопа. Бронхоскоп удаляют после восстановления у больного самостоятельного дыхания.
Дата добавления: 2015-04-25; просмотров: 1345;