Уравнения состояния реальных газов

Все реальные газы являются парами тех или иных жидкостей, причем, чем ближе газ к переходу в жидкое состояние, тем больше его отклонение от свойств идеального газа, состояние которого описывается уравнением Клапейрона. Для качественной оценки особенностей реальных газов рассмотрим область, где будут значительные отступления от уравнения, описывающего поведение идеальных газов.

Если сжимать газ при постоянной температуре, то можно достигнуть состояния насыщения (сжижения газа), соответствующего этой температуре и некоторому определенному давлению. При дальнейшем сжатии пар будет конденсироваться и в определенный момент полностью превратится в жидкость.

Процесс перехода пара в жидкость проходит при постоянных температуре и давлении, так как давление насыщенного пара однозначно определяется температурой. На рu -диаграмме (рисунок 10.1) область двухфазных состояний (пар и жидкость) лежит между кривыми кипящей жидкости и сухого насыщенного пара. При увеличении давления эти кривые сближаются. Сближение происходит потому, что объем пара, уменьшается, а объем жидкости увеличивается.

При некотором определенном для данной жидкости (пара) давлении кривые кипящей жидкости и пара встречаются в так называемой критической точке, которой соответствуют критические параметры: давление ркр, температура Ткр, удельный объем uкр, характеризующие критическое состояние ве­щества.

При критическом состоянии исчезают различия между жидкостью и паром. Оно является предельным физическим состоянием, как для однородного, так и для распавшегося на две фазы вещества.

При температуре более высокой, чем критическая, газ ни при каком давлении не может сконденсироваться, т. е. превратиться в жидкость.

В общем случае все газы в области, близкой к состоянию сжижения, приближенно воспроизводят связь между параметрами состояния по уравнению Клапейрона. Во всех газах с более или менее значительной плотностью нельзя пренебрегать силами сцепления между молекулами, объемом, занимаемым ими, а также ассоциацией молекул в группы.

Под ассоциацией понимается механическое соединение двух или нескольких молекул в одну сложную. Уменьшение числа самостоятельных частиц, из которых состоит газ, должно привести к возрастанию среднего молекулярного веса газа и уменьшению его давления. Ассоциация значительно усложняет математическое описание состояния реальных газов.

Рисунок 10.2
Рисунок 10.1
При уменьшении давления и возрастании температуры газа можно пользоваться уравнением состояния идеального газа за иск точением тех случаев, когда в газе под влиянием больших температур наступает изменение химической структуры (например, распад сложных молекул — диссоциация).

Уравнение состояния реальных газов выводится или чисто теоретически на основе гипотетических представлений о структуре газа, или на основании обработки экспериментальных зависимостей между р, u, Т.

Широкое распространение в научных исследованиях получило уравнение Ван-дер-Ваальса, выведенное путем пересмотра некоторых допущений, лежащих в основе уравнения состояния идеального газа. Уравнение состояния реального газа с учетом сил, действующих между молекулами, и их объема для 1 кг газа имеет вид

(10.1)

Это уравнение отличается от уравнения Клапейрона двумя поправками: поправкой на объем самих молекул b и поправкой на так называемое внутреннее давление - определяемое взаимным притяжением молекул газа. Это давление может рассматриваться как сила, действующая со стороны внешних периферийных молекул и направленная внутрь сосуда.

Рассмотрим изменения на изотермах, обусловленных поправками а и b. При температуре выше критической изотермы, построенные по уравнению Ван-дер-Ваальса, представляют собой плавные кривые, отличные от равнобоких гипербол, которые бы дало урав­нение состояния идеального газа. Последние в верхней части на рисунка 9.2 показаны пунктиром.

При температуре ниже критической имеется область объемов, где поправка (уменьшающая давление) играет определяющую роль и давление проходит через максимум в точке С. Для меньших объемов давление падает, проходит через минимум - точка В, а затем резко увеличивается, когда u стремится к значению b.

При критической температуре, максимум и минимум на изотермах сливаются в точке перегиба К, а так как касательная к изотерме в критической точке идет горизонтально, то для критической точки должны выполняться условия

, . (10.2)

Отсюда получаем уравнения

, (10.3)

. (10.4)

Температуру Ткр и объем uкр можно определить из уравнений (10.3) и (10.4), а давление ркр находится затем из уравнения (10.1). В результате получаем

, , (10.5)

Из последних соотношений можно определить индивидуальные константы а и b, зависящие от физических свойств данного газа

, .

Так как процесс перехода от жидкого состояния к газообразному идет при постоянных Т и р, то на рисунке 10.2 этому процессу соответствует линия АD.

Однако участки АВ и СD на изотермах можно воспроизвести экспериментально только при использовании очень чистых жидкостей и газов. Вещество на этих участках находится в виде перегретой жидкости и перенасыщенного (переохлажденного) пара. Такие состояния, когда вещество остается в однофазном состоянии и не распадается на фазы, называются метастабильными.

уравнения Ван-дер-Ваальса

Главная ценность уравнения Ван-дер-Ваальса состоит в том, что оно качественно правильно описывает непрерывность перехода из жидкого состояния в газообразное и дальнейшее развитие уравнения состояния пошло по пути уточнения расчетов и усовершенствования его теории.

Предпринимались попытки усовершенствования его за счет того, что коэффициенты а и b принимались не постоянными, а зависящими от температуры и объема. Но эти попытки не привели к созданию уравнения состояния, описывающего свойства газа в широком диапазоне изменения параметров.

Неудачи создания общего уравнения состояния привели к появлению целого ряда эмпирических уравнений, которые могли бы с достаточной точностью предсказывать поведение реальных газов в широком диапазоне условий. Наиболее известны из них: уравнение Битти – Бриджмена с пятью эмпирически определяемыми постоянными и уравнение Бенедикта-Вебб-Рубина, содержащее восемь эмпирических постоянных – (а, b, с, d, А0, В0, С0 и т.д.)

Уравнение Битти – Бриджмена, применяемое до давлений порядка 250 бар и плотностей газа, не превышающих 0,5 плотности в критической точке, имеет вид

, (10.7)

а уравнение состояния Бенедикта – Вебб – Рубина имеет вид

(10.8)

Эти уравнения могут предсказать р, u, Т – свойства газа с ошибкой в пределах нескольких десятых процента и, несмотря на их сложность, развитие вычислительной техники стимулирует использование таких уравнений состояния в обычных технических расчетах.

Хорошо согласуется с опытными данными одно из современных уравнений состояния газа — уравнение Вукаловича — Новикова, учитывающее ассоциацию молекул. При учете столкновений двойных молекул это уравнение имеет вид

, (10.9)

где ,

с и m — опытные константы.

В настоящее время теоретически обосновано уравнение состояния, представляющее собой разложение коэффициента сжимаемости z в бесконечный ряд по степеням 1/u

(10.10)

где В, С и Dвторой, третий и четвертый вириальные коэффициенты, учитывающие взаимодействие соответственно двух трех, четырех и т. д. молекул. Вириальные коэффициенты зависят лишь от температуры и определяются, если известна зависимость потенциальной энергии взаимодействия молекул U от расстояния между ними (рисунок 10.3).

Вместо точных аналитических зависимостей Uпот= f(r) практически применяют приближенные выражения, которые называются потенциалами. Широко используется потенциал Леннарда - Джонса, по которому энергия отталкивания пропорциональна двенадцатой степени расстояния между молекулами, а энергия притяжения – шестой

, (10.11)

где r - расстояние между молекулами; s— значение r, при котором Uпот = 0; e – максимальная величина энергии притяжения (глубина потенциальной ямы).

Значения s и e для каждого газа могут быть определены по экспериментальным данным. Кроме потенциала Леннарда – Джонса применяются другие потенциалы, которые могут быть использованы, для определенных групп сходственных веществ.

Рисунок 10.3
При решении целого ряда технических задач рабочими телами могут быть не широко используемые в технике вещества (водяной пар, углекислый газ, азот и некоторые другие), а вещества, термические свойства которых неизвестны.

В этом случае можно воспользоваться для предсказания свойств малоизученных веществ положением о термодинамическом подобии веществ.

Если значения индивидуальных констант а и b подставить в уравнение (10.1), то получим уравнение Ван-дер-Ваальса в функции приведенных параметров

, (10.12)

где , , .

Эти отношения называются приведенными давлением, температурой и объемом. Уравнение (10.12) можно записать в форме

(10.13)

В этой форме приведенное уравнение состояния будет одинаково для всех веществ. Состояния двух или нескольких веществ, в которых они имеют одинаковые приведенные параметры , называются соответственными состояниями, т. е. эти вещества находятся в состояниях, пропорционально удаленных от своего критического состояния.

Если вещества подчиняются одному и тому же приведенному уравнению состояния и имеют два одинаковых приведенных параметра, то у них одинаков и третий приведенный параметр, т. е. вещества, будут находиться в соответственных состояниях. Это положение носит название закона соответственных состояний.

Вещества, подчиняющиеся закону соответственных состояний, называют термодинамически подобными.

Практически закон соответственных состояний наиболее удобно применять в виде зависимости , причем для расчетов можно применить - диаграмму (рисунок 10.4). Эта диаграмма строится по экспериментальным данным дляразличных веществ и может быть использована для расчета термодинамических свойств малоизученных веществ методом термодинамического подобия.

Для этого, зная критические параметры вещества, находят и , а по -диаграмме определяется коэффициент сжимаемости при данных приведенных параметрах. Значение удельного объема можно вычислить по формуле

.

Точность расчета по этому методу не превышает 15%, так как закон соответственных состояний выполняется лишь приближенно. Так, при одинаковых я и т коэффициенты сжимаемости должны быть равны, причем должны быть равны и коэффициенты сжимаемости в критической точке . Но для реальных веществ , следовательно, строго говорить о выполнении закона соответственных состояний можно лишь для узких групп сходственных между собой веществ.


 

 

Водяной пар.

Парообразование при постоянном давлении

 

 

Рассмотрим изменение состояния водяного пара (реального газа), имеющего сравнительно высокую критическую температуру. Изме­нение параметров состояния водяного пара удобно проследить на р-u -диаграмме (рис. 9.5).

Положим, что 1 кг воды при 0° С заключен в цилиндре, закры­том свободно движущимся невесомым поршнем, на который действу­ет постоянное внешнее давление. Объем воды при указанных усло­виях обозначим . Если считать жидкость несжимаемой при лю­бых давлениях, то прямая, соединяющая точки l¢, l, l² и параллель­ная оси ординат, будет определять все возможные состояния воды при 0° С. Следует отметить, что для несжимаемой жидкости эта изохора совпадает с изотермой.

Если (при постоянном давлении) подводить к жидкости теплоту, то при достижении температуры кипения tВ начнется превращение воды в пар — точка т. Удельный объем жидкости вследствие нагре­ва увеличивается от до . При более высоком давлении процесс парообразования начнется и при более высокой температуре tн, сле­довательно, объем воды при достижении точки кипения будет больше, чем раньше (точка т).

На р-u -диаграмме геометрическое место точек, определяющих состояние воды, нагретой до температуры кипения, изображается кривой т¢, т, т². Эту кривую называют нижней (левой) пограничной кривой. При дальнейшем подведении теплоты начинается процесс парообразования. При условии постоянства давления, как показы­вает опыт, для всех жидкостей имеет место характерное явление: температура смеси жидкости и пара остается неизменной и равной температуре кипения tH.

Процесс парообразования прекратится в точке n, когда вся жид­кость превратится в пар. Между точками т и п система — двухфаз­ная, пар в этой области — влажный насыщенный.

Влажный насыщенный пар представляет собой смесь пара с жидкостью, причем жидкость может быть сосредоточена в ниж­ней части цилиндра или равномерно распределена в виде мельчайших капель по всему объему.

Пар, полученный при испарении всей жидкости (точка п), сухой насы­щенный. Удельный объем, пара в этой точке обозна­чим через u". При проведе­нии процесса парообразо­вания при другом давле­нии соответственно полу­чим точки n¢, п". Кривая п' п п" представляет собой верхнюю (правую) пограничную кривую. Пересече­ние верхней и нижней пограничных кривых определяет положение критичес­кой точки К. Для воды критической точке соответствует ркр = 221,048 бар, Ткр = 647,15° К; uкр = 0,0031 м3/кг. На рис. 9.5 в области влажного насыщенного пара пунктирными линиями показаны линии постоянной сухости. Степень сухости пара х представляет собой массо­вую долю сухого насыщенного пара во влажном

(9.14)

Для точек, лежащих на нижней пограничной кривой, х = 0, для точек, лежащих на верхней пограничной кривой, х = 1. Если к сухо­му насыщенному пару продолжать подводить теплоту, то удельный объем и температура увеличиваются (un > u", t > tн). Пар в этом состоянии называют перегретым. Начиная с точки п вправо система однофазная.

 

Изменение агрегатного состояния

 

В § 2 рассматривался процесс парообразования, т. е. переход из жидкого состояния в парообразное, осуществляемый при постоян­ном давлении. Аналогичный переход из твердого состояния в газо­образное называют возгонкой, или сублимацией, а из твердого со­стояния к жидкому — плавлением.

Состояния вещества при этих превращениях считают устойчивы­ми, стабильными. При этом всякие изменения состояния считаются квазистатическими, как это обычно принято в термодинамике.

Переход из одного агрегат­ного состояния в другое удобно рассматривать на р t - диаграмме (рис. 9.6). На диаграмме кри­вая АК представляет собой зависимость между давлением насыщенного пара и температу­рой кипения, т. е. р = f (tн) (кривая упругости пара).

Кривая равновесия жидкой и газообразной фазы заканчи­вается в критической точке К.

Если от жидкости отбирать теплоту при постоянном давле­нии, то при определенной температуре жидкость переходит в твердое состояние. Темпе­ратура, при которой осуществляется этот переход, на­зывается температурой затвердевания, или плавления tпл, а коли­чество теплоты, отбираемое в этом процессе, называется скрытой те­плотой плавления. При плавлении так же, как и при парообразо­вании, вещество находится в двух фазах. Аналогично кривой АК можно построить кривую AD, которая однозначно определяется за­висимостью р = f(tпл).

Кривая сублимации АВ представляет собой зависимость р = f(tc) для перехода твердого тела в газообразное. Этот переход при тем­пературе сублимации tc происходит вследствие подведения некото­рого количества теплоты, носящего название скрытой теплоты суб­лимации. Точки этой кривой соответствуют двухфазной системе твер­дое тело — газ (например, водяной пар над поверхностью льда).

Все три кривых равновесия (парообразования, плавления и суб­лимации) пересекаются в некоторой характерной для каждого ве­щества точке. Эта точка А называется тройной точкой, а изображае­мое ею состояние — фундаментальным. В этой точке находятся в термодинамическом равновесии три различные фазы вещества: твердая, жидкая и газообразная.

Тройной точке воды соответствуют следующие параметры: дав­ление р = 0,00610 бар, Т =273,16°К.

Рассмотрение описанных процессов показывает, что в состояни­ях, находящихся между кривыми АВ, АЕ и AD, тело будет нахо­диться целиком в одной фазе: правее АВ и АК — область газообраз­ного состояния; левее линий AD и АВ располагается область вещест­ва в твердом состоянии; между линиями AD и АК находится область жидкости.

В состояниях на линии АК, AD и АВ вещество может существо­вать в двух фазах, причем на линии АК в жидкой и газообразной, на AD —твердой и жидкой; а на линии АВ вещество может быть в твердом и газообразном состояниях. Расположение и вид этих трех кривых

 

AK - p = f(tн), АD - р = f(tпл), AB - p = f(tc)

 

зависят от природы вещества и устанавливаются опытным путем.

 

 

Параметры состояния воды и водяного пара

 

Вследствие незначительной сжимаемости воды можно принять, что плотность воды при 0° С и любых давлениях есть величина пос­тоянная, a u'0 = 0,001 м3/кг. Начало отсчета внутренней энергии энтальпии и энтропии берется от 0° С и соответствующего давления насыщения р = 0,00610 бар. При этих параметрах энтальпия, энтро­пия, а также внутренняя энергия воды берутся условно равными ну­лю: s'0 = 0, i'0 = 0, и'0 = 0.

В процессе подогрева воды происходит нагревание ее до темпера­туры кипения tн. Удельный объем воды при температуре кипения u' будет больше объема u'0. Соответствующие значения u' для воды в функции температуры и давления для состояний, лежащих или на нижней пограничной кривой, или левее ее, даются в справочной ли­тературе.

Количество теплоты, которое нужно сообщать воде, чтобы на­греть ее от 0° С до температуры кипения в процессе р = const, назы­вается теплотой жидкости. Это количество теплоты определяется по формуле

, (9.15)

или

(9.16)

где — средняя теплоемкость воды в интервале температур от 0° С до tН°С

 

При низких по сравнению с Ткр температурах можно считать = 4,1865 кдж/(кг·град).

 

Воспользуемся в изобарном процессе подогрева воды первым за' коном термодинамики, по которому

(9.17)

где и' — внутренняя энергия воды при температуре кипения.

 

Так как при 0° С и¢0 = 0, а работа расширения жидкости

(9.18)

практически заметна только при больших значениях давления, то

(9.19)

Энтальпия воды при температуре кипения определяется по об­щей формуле

(9.20)

Полагая, что , получим

(9.21)

В процессе нагревания жидкости от 0° С до температуры кипе­ния происходит увеличение ее энтропии, которое может быть най­дено по формуле

(9.22)

при s'0 = 0 и сРв = 4,1865 кдж/(кг·град)

 

(9.23)

Как уже было сказано, опытами установлено, что в процессе па­рообразования жидкость, нагретая до температуры кипения при . этой температуре и определенном постоянном давлении, обращается в пар. Количество теплоты, затрачиваемое в процессе при р = const на превращение 1 кг воды при температуре кипения в сухой насы­щенный пар той же температуры, обозначим через г.

Теплота г называется скрытой теплотой парообразования. По первому закону термодинамики

(9.24)

где и²— внутренняя энергия сухого насыщенного пара;

l" — работа расширения в процессе парообразования.

Разность внутренних энергий и" и¢ затрачиваемая на работу против внутренних сил, называется внутренней теплотой парообра­зования и обозначается буквой r. Теплота, затрачиваемая на работу против внешних сил, равна

(9.25)

и называется внешней теплотой парообразования. Обозначим ее буквой y.

Таким образом,

(9.26)

Вследствие того, что процесс парообразования идет при постоян­ном давлении,

(9.27)

 

Величины r и i" даются в таблицах насыщенного пара, а - легко определяются по приведенным выше формулам.

С возрастанием давления, как видно из рис. 9.7, увеличивается энтальпия жидкости и достигает максимального значения при кри­тическом давлении. Скрытая теплота парообразования уменьшается с ростом давления и равна нулю при критическом давлении (и тем­пературе), потому что в этих условиях различия между жидкостью и ее паром исчезают и процесс парообразования как таковой отсутствует.

Изменение энтропии в про­цессе парообразования при под­ведении к кипящей воде r кдж/кг теплоты равно

(9.28)

откуда

(9.29)

или, используя значение из выражения (9.23),

(9.30)

При полном испарении жидкости состояние сухого насыщенного пара определяется одним параметром: давлением или температурой. Поэтому объем, внутренняя энергия и энтальпия определяются по таблицам насыщенного пара по давлению или температуре.

Связь между удельными объемами жидкости и пара на линии на­сыщения u¢ и u² давлением насыщенного пара рН температурой ТН и скрытой теплотой парообразования может быть получена следую­щим образом. При превращении жидкости в пар давление насыщен­ного пара от объема системы не зависит, следовательно, в выраже­нии (8.8) , но так как равновесное превращение жидкости в пар происходит при постоянной температуре (ТН=const), то

где dV представляет изменение объема системы при переходе жидкости в пар. Таким образом,

(9.31)

 

Изменение объема системы, если испарилась жидкость массой dm, равно

а приращение энтропии в квазистатическом процессе испарения жидкости массой dm по (9.28)

Подставив эти значения в уравнение (9.31), получим

(9.32)

где — производная от давления по температуре на кривой фазового равновесия рН = f (TН).

Уравнение (9.32) называют уравнением КлапейронаКлаузиуса и применяют при исследованиях изменений агрегатного состояния вещества из жидкого состояния в парообразное. Аналогичные урав­нения можно применять и к процессам перехода вещества из твер­дого состояния в жидкое или газообразное.

Параметры влажного насыщенного пара при заданной величине сухости могут быть определены из следующих соотношений.

Удельный объем влажного насыщенного пара

(9.33)

Так как объем воды (1 — х) мал по сравнению с объемом пара, то при невысоких давлениях

(9.34)

Энтальпия влажного насыщенного пара с учетом того, что на превращение в пар х кг жидкости необходимо затратить хr кдж/кг теплоты, равна

(9.35)

Энтропия влажного насыщенного пара

(9.36)

Свойства перегретого пара резко отличаются от свойств насы­щенного пара и приближаются к свойствам газов.

Перегретый пар характеризуется тем, что его температура выше температуры парообразования ТH при том же давлении и удельный объем его больше, чем объем сухого насыщенного пара при том же давлении.

Количество теплоты, необходимое для перевода 1 кг сухого на­сыщенного пара при р = const в перегретый с температурой t, на­зывают теплотой перегрева qпи определяют по формуле

(9.37)

 

Если срm — средняя массовая теплоемкость перегретого пара при постоянном давлении, то

(9.38)

Значение срm берется для перегретого пара по формуле

Энтальпия перегретого пара

(9.39)

называется полной теплотой перегретого пара. По первому закону термодинамики

(9.40)

где — работа расширения в изобарном процессе перегрева пара;

— изменение внутренней энергии в процессе перегрева.

 

Изменение энтропии в равновесном изобарном процессе перегрева равно

(9.41)

или

 

(9.42)

Свойства перегретых паров будут тем ближе к свойствам идеаль­ного газа, чем больше температура перегрева.

 

Т—s-диаграмма водяного пара

 

Для графического изображения процессов, происходящих в паре, удобно пользоваться Т — s-диаграммой, ибо в ней площадь под кри­вой обратимого процесса дает количество теплоты, сообщаемое телу или отнимаемое от него. Так как в системах координат р v и Т—s любая точка изображает определенное состояние тела, то точкам р- диаграммы должны соответствовать определенные точки, Тs диаграммы (рис. 9.8).

Если было принято условно, что энтропия начального состояния воды so = 0, то эта точка лежит на оси ординат на 273° выше абсо­лютного нуля.

Перенося по точкам нижнюю пограничную кривую (х = 0) из системы р v в Т — s-диаграмму, получим соответствующую ей кривую, абсциссами которой являются значения s'. Аналогично на­носится верхняя пограничная кривая (х = 1), абсциссами которой будут значения энтропии сухого насыщенного пара s".

В точке b диаграммы начинается кипение при ТH = const, и энтро­пии в процессе парообразования повышается

Процесс парообразования заканчивается в точке с, где

Так как процесс парообразования идет при Тн = const и р — =const, изотерма b-с является одновременно и изобарой. Дальней­ший подвод теплоты снова сопро­вождается увеличением темпера­туры и энтропии. В процессе пере­грева пара (кривая с-е)

Вследствие того что площади в Т — s-диаграмме изображают количество подведенной (отведен­ной) теплоты, то пл. аbАО — теп­лота в процессе нагрева жидкости от 0° С до температуры кипения; пл. abА0 — теплота, подводи­мая к воде в процессе парообра­зования; пл. сеСВ — теплота, затраченная на перегрев пара.

Учитывая, что количество теплоты в процессе р = const равно разности энтальпий , , площадь, ог­раниченная ординатами, осью абсцисс и изобарой, проходящей че­рез точку, определяет энтальпию в данной точке. Точка пересече­ния в верхней и нижней пограничных кривых является критической точкой К.

Область, лежащая между кривыми аК и сK, — это область влаж­ного насыщенного пара. Область, лежащая правее верхней погра­ничной кривой, — область перегретого пара.

Исследования паровых процессов и расчеты существенно облег­чаются при наличии подробной Т — s-диаграммы, в которой нане­сены обе пограничные кривые, сетка изобар и изохор, а также кривые постоянной сухости х = const, которые на рис. 9.8 показа­ны пунктирными линиями.

 

§ 6. i—s-диаграмма водяного пара

 

Для изучения и расчетов различных термодинамических процес­сов, в которых рабочим телом является насыщенный и перегретый пар, особо удобна i — s-диаграмма (рис. 9.9).

 

 

В системе координат i — s наносятся пограничные кривые, изо­бары и изотермы. Нижняя пограничная кривая и верхняя погранич­ная кривая строятся по известным значениям , , , и сливаются в критической точке К. В области влажного насыщенного пара нано­сятся линии постоянной сухости (пунктирные кривые). В этой диа­грамме теплоты жидкостей, парообразование и перегрев изображаются линейными отрезками, а не площадями. Теплота парообразования по данной изобаре

равна разности ординат точек пересечения изобары с пра­вой и левой пограничными кривыми.

Для процесса парообразо­вания, происходящего при р = const,

т.е.

Следовательно, в области влажного насыщенного па­ра изобары, являясь одно­временно и изотермами, представляют собой прямые линии с угловым коэффициентом, равным Tн; из диаграммы видно, что изобары пересекают пограничные кривые без излома. Изохоры, изобары и изотермы в области перегретого пара строятся по точкам. Изобары и изохоры в области перегрева — слабо вогнутые логариф­мические кривые; изотермы в области перегретого пара — выпуклые кривые, поднимающиеся слева вверх направо. Вид изотерм опре­деляется температурой, которой они соответствуют. Чем больше тем­пература, тем выше располагается изотерма. Чем дальше от погра­ничной кривой (х = 1) проходит изотерма, тем больше она прибли­жается к горизонтали i = const, так как в области идеального газа энтальпия однозначно определяется температурой. На рис. 9.9 точ­ки A, В, С изображают соответственно состояния влажного, сухого и перегретого пара. Причем точка А лежит на пересечении изобары (изотермы) и линии постоянной сухости, точка В лежит на пересе­чении изобары и верхней пограничной кривой, точка С находится на пересечении изобары и изотермы. По положению точки, соответ­ствующей некоторому состоянию пара, можно определить на i — s-диаграмме числовые значения всех параметров в этой точке.

 

 

Парогазовые смеси

 

Большинство газов, применяемых в технике, содержит пары тех или иных жидкостей. Наиболее распространенными являются смесь воздуха или какого-либо другого газа с водяным паром, смесь воз­духа с парами бензина, керосина и т. п.

Характер изменения параметров парогазовой смеси имеет важ­ное значение в расчетах процесса сушки, кондиционирования воз­духа, сверхзвуковых аэродинамических труб, обледенения самоле­тов, процесса испарения топлива в двигателях и форсировании их впрыском жидкостей и т.д.

Смесь, состоящая из сухого газа и перегретого пара, называется ненасыщенным влажным газом, а смесь из сухого газа и насыщенного пара — насыщенным влажным газом.

При охлаждении влажного газа до определенной температуры (температуры точки росы) пар становится насыщенным, а в дальней­шем может и сконденсироваться.

Состояние парогазовой смеси определяется сравнительно узким диапазоном температуры и давления. Значительное повышение тем­пературы или понижение давления приводит к тому, что влажный газ превращается в простую газовую смесь (гл. 11, § 4).

Полагая, что перегретый пар любой жидкости, входящий в сос­тав влажного газа, приближается по своим свойствам к газам, можно рассматривать влажный газ как газовую смесь.

По закону Дальтона давление смеси идеальных газов р равно сумме парциальных давлений

. (9.43)

где pv — парциальное давление сухого газа; рп — парциальное дав­ление пара.

Равным образом можно записать

(9.44)

 

Равенство (9.44) показывает, что плотность влажного газа выше плотности сухого тогда, когда давление влажного газа по урав­нению (9.43) выше сухого.

Основными характеристиками влажного состояния газа являют­ся:

относительная влажность j, которая определяет степень насыщения газа паром

(9.45)

где рп и рн — плотности перегретого и насыщенного пара;

и — соответствующие парциальные давления.

 

Соотношение (9.45) справедливо только тогда, когда можно считать, что пар жидкости является идеальным газом вплоть до состояния насыщения. При этом

; ,

где Rп = Rн — газовая постоянная пара;

абсолютная влажность D, определяющая массу пара, содержащегося в 1 м3 газа,

кг/м3

влагосодержание d — это масса пара, содержащегося в 1 кг сухого газа,

или, определяя рп и рг из уравнения состояния, получим

(9.46)

Рассматривая влажный газ как газовую смесь, выведем соотно­шения, связывающие параметры влажного газа. Пусть состояние, влажного газа определяется его давлением р, температурой t, плот­ностью r и относительной влажностьюj. По таблицам сухого на­сыщенного пара определяем для данной температуры значения rн и рн.

Плотность пара в смеси по уравнению (9.45) равна

а плотность сухого газа

(9.47)

Парциальное давление сухого газа можно определить из урав­нения состояния

Парциальное давление пара в смеси

Если заданы для влажного газа р, t, , а плотность его неизвест­на, то, найдя по таблицам насыщенного пара рн и для данной тем­пературы, определим

Парциальные давления пара и сухого газа вычислим по формулам

,

Плотность сухого газа найдем из уравнения состояния

 

(9.48)

 

 

а плотность влажного газа вычислим по формуле (9.44). Влагосодержание на 1 м3 и на 1 кг сухого газа определяют по формулам:

;

(9.49)

Если газ насыщен паром, то j = 1 и

, а (9.50)

 

Массовые доли сухого газа и пара во влажном газе соответствен­но равны:

 

(9.51)

Используя обычное выражение газовой постоянной для смеси газов (гл. 11, § 4), получим

(9.52)

Теплоемкость влажного газа можно определить, зная массовый состав его и теплоемкости сухого газа и пара,

(9.53)

Так же, как и теплоемкость, энтальпия влажного газа равна сумме энтальпий сухого газа и пара. Следовательно,

(9.54)

Энтальпия 1 кг сухого газа

Энтальпия водяного пара, который находится в перегретом сос­тоянии, определяется по формуле

(9.55)

где i0+ctн — энтальпия сухого насыщенного пара в газе (tн— тем­пература кипения при определенном парциальном давлении); срт — средняя теплоемкость перегретого пара.

 

 

Для водяного пара iп может быть взята из таблиц водяного пара. Таким образом, энтальпия влажного насыщенного пара равна

( 9.56)

Тепловые процессы парогазовой смеси имеют ряд особенностей, их можно разделить на:

процессы, идущие без фазовых превращений, в этом случае отно­сительная влажность j < 1, пар в смеси находится в перегретом со­стоянии и только в крайнем случае достигает состояния насыщения j = 1;

процессы, идущие с фазовыми превращениями; насыщенный пар при дальнейшем протекании процесса начнет конденсироваться, при этом j остается равной единице.

Процессы, идущие при наличии фазового перехода, сильно ус­ложняют математическое описание этих процессов и требуют спе­циальной методики расчета.

 

 

i—s-диаграмма влажного воздуха

 

Для проведения расчетов, связанных с влажным воздухом, поль­зуются i d-диаграммой, предложенной Рамзиным. На диаграмме по оси ординат откладываются значения энтальпии влажного воз­духа из расчета на 1 кг сухого газа, а по оси абсцисс — влагосодержание в граммах на1 кг сухого воздуха. Диаграмма построена толь­ко для давления 745 мм. рт. ст. В основном диаграмма служит для определения параметров процесса во время сушки.

Рассмотрим i — s-диаграмму для влажного воздуха. С помощью этой диаграммы можно определить состояние как влажного насыщен­ного, так и ненасыщенного воздуха, т. е. для процессов, идущих с лю­быми значениями относительной влажности.

В этой диаграмме (рис. 9.10) по оси ординат откладывается эн­тальпия насыщенного воздуха

(9.57)

где срв — теплоемкость сухого воздуха; — энтальпия сухого насыщенного пара при температуре t.

А по оси абсцисс — энтропия паровоздушной смеси

(9.58)

где срп — теплоемкость сухого насыщенного пара; рв и рп — соответ­ственно парциальные давления сухого воздуха и пара; р и р0п—начальные давления сухого воздуха и пара; s и s0п — началь­ные энтропии сухого воздуха и пара.

 

На диаграмме наносятся изобары 1 > р2 > р3 и т. д.), изохоры {u1 > u2 > u3 и т. д.), изотермы (t1 < t2 < t3 и т. д.) и линии Достоянного влагосодержания (d1 < d2 < d3 и т. д.).

Несмотря на то, что диаграмма построена для насыщенного влаж­ного воздуха, по ней можно определить и параметры ненасыщенного влажного воздуха.

Для этого должно быть заменено отношением

(9.59)

где р — действительное дав­ление влажного воздуха; условное давление, при котором влажный воздух заданного влагосодержания (d = const) становится насы­щенным в изотермическом процессе сжатия.

При такой замене давле­ние р' определяется изобарой, проходящей через данную точку диаграммы, для кото­рой известно действительное значение давления р. Зная действительное давление

влажного воздуха, можно определить значение ф по формуле (9.59).

 

Объем влажного воздуха может быть определен из следующих со­отношений:

(9.60)

откуда

На i — s-диаграмме в связи с тем, что изобары насыщенного воз­духа в данной точке не соответствуют действительному давлению, энтропия в этой точке не будет соответствовать действительному зна­чению энтропии. Для определения энтропии ненасыщенного возду­ха на i — s-диаграмме проведены кривые . Действитель­ное значение энтропии влажного воздуха равно

(9.61)

где s' - значение энтропии в данной точке; Ds — поправка к дей­ствительному значению энтропии. Погрешность расчетов для нена­сыщенного воздуха не превышает 4 — 5%.

Диаграмма i — s позволяет производить расчеты процессов, свя­занных с расширением и сжатием влажного воздуха, увлажнением его, с впрыском в камеру сгорания или компрессор двигателя и т. п.








Дата добавления: 2015-04-03; просмотров: 4211;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.197 сек.