А) Уравнения, описывающие переходные процессы.

Из уравнения механической характеристики (5.4) получим:

 

М = ½b½w0 - ½b½w. (5.5,а)

 

Подставив (5.5,а) в уравнение движения (5.1), после элементарных преобразований будем иметь:

(5.13)

Коэффициент при производной как и раньше, - электромеханическая постоянная времени Тм. Правая часть уравнения представляет собою скорость wс, соответствующую моменту сопротивления Мс, однако, в рассматриваемом случае w0 , а значит и wс не постоянные величины, а известные функции времени w0(t) и wc(t). Таким образом, уравнение (5.13) имеет вид:

. (5.14)

 

Решение этого дифференциального уравнения определит искомую зависимость w(t).

Для получения зависимости М(t) удобно воспользоваться непосредственно уравнением движения (5.1), подставив в него производную найденной функции w(t):

(5.15)

Правая часть уравнения (5.14), вообще говоря, может иметь любой вид. Закон w0(t) в случае безынерционного преобразователя формируется на его входе; при инерционном преобразователе закон w0(t) связан со свойствами преобразователя. В ряде случаев закон w0(t) формируется таким образом, чтобы получить требуемый закон w(t).

 

б) Уравнение переходных процессов при линейном законе wс(t)

Получим решение уравнения (5.14) для одного важного вида функции wс(t) - для линейного изменения wс во времени:

wс(t) = а + kt. (5.16)

Такой закон может быть сформирован при безынерционном преобразователе с помощью задатчика интенсивности.

Мы используем здесь общее уравнение прямой, не накладывая пока никаких ограничений на величины а и k с тем, чтобы, рассматривая частные случаи, можно было пользоваться полученным общим результатом.

Уравнение (5.14) с учетом (5.16) имеем вид:

(5.17)

Решение будем искать, как и прежде, в виде суммы свободной wсв и принужденной wпр составляющих:

w = wсв + wпр . (*)

 

Свободная составляющая, то есть решение однородного уравнения, полученного из (5.17) имеет вид:

Принужденную составляющую будем искать, учитывая (5.16), в виде:

wпр = В + kt,

так как в установившемся режиме скорость будет линейно изменяться во времени. Подставив wпр в (5.17) получим:

В + kt + kTм = a + kt

или

B = a - kT м.

Подставим теперь wсв иwпр в (*):

Постоянную А найдем, используя начальные условия: при t = 0 w = wнач:

wнач = А + а - kTм,

откуда

А = wнач - а + kTм

Окончательно будем иметь:

. (5.18)

Перейдем теперь к рассмотрению некоторых конкретных переходных процессов в системе П-Д.

 








Дата добавления: 2015-05-19; просмотров: 2170;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.