Биоэлектрические процессы. Потенциал действия. Его основные части. Механизм возникновения (на примере ПД скелетной мускулатуры).

В основе потенциала действия лежат последовательно развивающиеся во времени изменения ионной проницаемости клеточной мембраны. При действии на клетку раздражителя проницаемость мембраны для ионов Na+ резко повышается за счет активации натриевых каналов.

При этом ионы Na+ по концентрационному градиенту интенсивно перемещаются извне - во внутриклеточное пространство. Вхождению ионов Na+ в клетку способствует и электростатическое взаимодействие. В итоге проницаемость мембраны для Na+ становится в 20 раз больше проницаемости для ионов К+.

Поскольку поток Na+ в клетку начинает превышать калиевый ток из клетки, то происходит постепенное снижение потенциала покоя, приводящее к реверсии - изменению знака мембранного потенциала. При этом внутренняя поверхность мембраны становится положительной по отношению к ее внешней поверхности. Указанные изменения мембранного потенциала соответствуют восходящей фазе потенциала действия (фазе деполяризации).

Мембрана характеризуется повышенной проницаемостью для ионов Na+ лишь очень короткое время 0.2 - 0.5 мс. После этого проницаемость мембраны для ионов Na+ вновь понижается, а для К+ возрастает. В результате поток Na+ внутрь клетки резко ослабляется, а ток К+ из клетки усиливается. В течение потенциала действия в клетку поступает значительное количество Na+, а ионы К+ покидают клетку. Восстановление клеточного ионного баланса осуществляется благодаря работе Na+,К+ - АТФазного насоса, активность которого возрастает при повышении внутренней концентрации ионов Na+ и увеличении внешней концентрации ионов К+. Благодаря работе ионного насоса и изменению проницаемости мембраны для Na+ и К+ первоначальная их концентрация во внутри - и внеклеточном пространстве постепенно восстанавливается.

Итогом этих процессов и является реполяризация мембраны: внутреннее содержимое клетки вновь приобретает отрицательный заряд по отношению к внешней поверхности мембраны.

Потенциал действия - это электрический компонент нервного импульса, характеризующий изменения электрического заряда (потенциала) на локальном участке мембраны во время прохождения через него нервного импульса (от -70 до +30 мВ и обратно).

При трансмембранном способе регистрации возникает потенциал действия, состоящий из 3-х основных компонентов:местный (локальный ответ); пик (спайк); следовые потенциалы (отрицательный и положительный).

Местный (локальный) ответ возникает и продолжается до тех пор, пока раздражитель не достигнет пороговой величины. Если раздражитель (его сила) меньше 50-75 % пороговой величины проницаемость мембраны изменяется незначительно и равновесно для всех ионов (неспецифично). После достижения силы раздражителя 50-75 % начинает преобладать натриевая проницаемость, т. к. натриевые каналы освобождаются от ионов Са2+. Происходит снижение мембранного потенциала при достижении пороговой величины разность потенциалов достигает критического уровня деполяризации.

Критический уровень деполяризации (Ек) - это та разность потенциалов, которая должна быть достигнута, чтобы местные изменения перешли в пик потенциала действия. Ек - пороговая величина, при которой местные изменения переходят в распространенные. Ек величина практически постоянная и равна - 40 - -50 мВ. Разность между мембранным потенциалом и пороговой величиной характеризует порог раздражения и отражает возбудимость ткани.

Спайк (пик) - самая постоянная часть. Он состоит из восходящего колена (фаза деполяризации) и нисходящего колена (реполяризация):

. Фаза деполяризации возникает в результате лавинообразного движения Nа+ внутрь клетки. Этому способствуют две причины: открываются потенциалзависимые Nа+-каналы. В этом случае происходит деполяризация по типу процесса с положительной обратной связью (самоподкрепляющийся процесс).

Освобождение натриевых каналов от Са2+.

Заряд клеточной мембраны сначала снижается до 0 (это собственно деполяризация), а затем меняется на противоположный (инверсия или овершут). Для характеристики фазы деполяризации вводится понятие реверсии - это та разность потенциалов, на которую потенциал действия превышает потенциал покоя.

 

Р = (потенциал действия) - (мембранный потенциал) 20-30 = 50-60 мВ.

Р (реверсия) - это то количество мВ на которое произошла перезарядка мембраны. Фаза деполяризации продолжается до достижения электрохимического равновесия по Nа+. Затем наступает следующая фаза. Амплитуда потенциала действия не зависит от силы раздражителя. Она зависит от концентрации Nа+ (как снаружи, так и внутри клетки), от количества натриевых каналов, особенностей натриевой проницаемости.

. Фаза реполяризации характеризуется:

·снижением проницаемости клеточной мембраны для Nа+ (Nа-инактивация). Натрий накапливается на наружной поверхности клеточной мембраны;

·возрастает проницаемость мембраны для К+, в результате повышается выход К+ из клетки с увеличением положительного заряда на мембране;

·изменение активности Nа+-К+ насоса.

Реполяризация - это процесс восстановления заряда мембраны. Но полного восстановления нет, т. к. возникают следовые потенциалы.

Следовые потенциалы:

. Отрицательный следовой потенциал - замедление реполяризации клеточной мембраны. Это результат проникновения внутрь клетки какого-то количества Nа+, таким образом, отрицательный следовой потенциал - это следовая деполяризация.

. Положительный следовой потенциал - увеличение разности потенциалов. Это результат повышенного выхода ионов К+ из клетки. Положительный следовой потенциал - это следовая гиперполяризация. Как только калиевая проницаемость возвращается к исходному уровню - регистрируется мембранный потенциал.

 

10.Возбуждение: определение понятия, виды возбуждения (местное и распространяющееся), их физиологическая характеристика.

Возбужде́ние в физиологии – ответ ткани на раздражение, проявляющийся помимо неспецифических реакций (генерация потенциала действия, метаболические изменения) в выполнении специфической для этой ткани функции; возбудимыми являются нервная (проведение возбуждения), мышечная (сокращение) и железистая (секреция) ткани.

В определённых участках нервных и мышечных клеток позвоночных животных и в некоторых клетках беспозвоночных возбуждение имеет местный характер. Среди разновидностей местного возбуждение наиболее важное функциональное значение имеют генераторные потенциалы рецепторов и возбуждающие постсинаптические потенциалы, возникающие в области контакта клетки с двигательными нервными окончаниями. Так же как и потенциал действия, местное возбуждение связано с избирательным повышением ионной проницаемости мембраны и проявляется в виде отрицательного колебания поверхностного потенциала. Однако, в отличие от потенциала действия, местное возбуждение не подчиняется правилу «всё или ничего»: оно не имеет порога и варьирует по амплитуде и длительности в зависимости от силы и длительности раздражителя. Деполяризация мембраны, сопровождающая местное возбуждение, служит раздражителем для соседних участков мембраны, способных к генерации распространяющегося потенциал действия. Поэтому при достижении местным возбуждение (генераторным или постсинаптическим потенциалом) пороговой величины возникает потенциал действия. Различия в свойствах местного и распространяющегося возбуждение имеют важное значение для процессов передачи информации нервными клетками и их волокнами. Местное возбуждение свойственно тем участкам клеточной мембраны, которые специализированы на восприятии раздражений, приходящих извне (рецепторная мембрана) или от других нервных клеток (постсинаптическая мембрана). Местное возбуждение имеет градуальный характер и потому может более тонко отражать характеристики раздражителя - его силу, длительность, скорость нарастания и падения, - чем потенциал действия, возникновение которого служит лишь сигналом достижения раздражителем пороговой величины. С другой стороны, способность потенциал действия к быстрому бездекрементному распространению делает его наиболее адекватным для передачи информации по длинным проводникам. При этом информация о силе, длительности и крутизне изменений раздражителя кодируется частотой нервных импульсов, изменением этой частоты во времени и длительностью всего залпа потенциал действия.

 

11. Торможение: определение понятия, виды (деполяризационное и гиперполяризационное), их физиологическая характеристика.

Торможение существует наряду с возбуждением и представляет собой одну из форм деятельности нейрона. Торможением называют особый нервный процесс, выражающийся в уменьшении или полном отсутствии ответной реакции на раздражение.

Явление центрального торможения было открыто И.М. Сеченовым в 1862 г. В центральной нервной системе наряду с возбуждающими имеются и тормозящие нейроны. На каждой нервной клетке располагаются возбуждающие итормозящие синапсы. А поэтому в каждый данный момент на теле нейрона возникает в одних синапсах возбуждение, а в других — торможение; соотношение этих процессов определяет характер ответной реакции.

Различают два вида торможения в зависимости от механизмов его возникновения: деполяризационное и гиперполяризационное.

Деполяризационное торможение возникает вследствие длительной деполяризации мембраны, а гиперполяризаиионное – вследствие гиперполяризации мембраны. В основе возникновения деполяризационного торможения лежит инактивация мембраны по натрию, вследствие чего уменьшается потенциал действия и его раздражающее влияние на соседние участки, в итоге пре­кращается проведение возбуждения. Гиперполяризационное торможение осуществляется с участием особых тормозных структур и связано с изменением проницаемости мембраны по отношению к калию и хлору, что вызывает увеличение мембранного и порогового потенциалов, в результате чего становится невозможной ответная реакция.

 

12. Синапс: определение понятия, строение. Классификации (по морфологическому, нейрохимическому и функциональному признакам).

Термин синапс (от греческого sy'napsys - соединение, связь) ввел И. Шеррингтон в 1897 году. В настоящее время синапсами называют специализированные функциональные контакты между возбудимыми клетками (нервными, мышечными, секреторными), служащие для передачи и преобразования нервных импульсов. Синапс – это структурно-функциональное образование, обеспечивающее переход возбуждения или торможения с окончания нервного волокна на иннервирующую клетку.

1. По локализации: Центральные синапсы лежат в пределах центральной нервной системы, а также находятся в ганглиях вегетативной нервной системы. Центральные синапсы – это контакты между двумя нервными клетками, причем эти контакты неоднородны и в зависимости от того, на какой структуре первый нейрон образует синапс со вторым нейроном, различают:1) аксосоматический, образованный аксоном одного нейрона и телом другого нейрона;2) аксодендритный, образованный аксоном одного нейрона и дендритом другого;3) аксоаксональный (аксон первого нейрона образует синапс на аксоне второго нейрона);4) дендродентритный (дендрит первого нейрона образует синапс на дендрите второго нейрона).

Различают несколько видов периферических синапсов: 1) мионевральный (нервно-мышечный), образованный аксоном мотонейрона и мышечной клеткой;2) нервно-эпителиальный, образованный аксоном нейрона и секреторной клеткой.

2. Функциональная классификация синапсов: возбуждающие синапсы; тормозящие синапсы.

3. По механизмам передачи возбуждения в синапсах: химические; электрические.

Особенность химических синапсов заключается в том, что передача возбуждения осуществляется при помощи особой группы химических веществ – медиаторов.

Синапсы имеют ряд физиологических свойств:

1) клапанное свойство синапсов, т. е. способность передавать возбуждение только в одном направлении с пресинаптической мембраны на постсинаптическую;

2) свойство синаптической задержки, связанное с тем, что скорость передачи возбуждения снижается;

3) свойство потенциации (каждый последующий импульс будет проводиться с меньшей постсинаптической задержкой). Это связано с тем, что на пресинаптической и постсинаптической мембране остается медиатор от проведения предыдущего импульса;

4) низкая лабильность синапса (100–150 имульсов в секунду).

Пресинаптический отдел синапса представлен конечной веточкой аксона, которая на расстоянии 200-300 мкм от контакта теряет миелиновую оболочку. В пресинаптическом отделе синапса содержится большое количество митохондрий и пузырьков (везикул) округлой или овальной формы размером от 0,02 до 0,05 мкм. В везикулах содержится вещество, способствующее передаче возбуждения с одного нейрона на другой, которое называют медиатором. Везикулы концентрируются вдоль поверхности пресинаптического волокна, находящейся против синаптической щели, ширина которой равна 0,0012-0,03 мкм. Постсинаптический отдел синапса образуется мембраной сомы клетки или ее отростков, а в концевой пластинке - мембраной мышечного волокна. Пресинаптическая и постсинаптическая мембраны имеют специ­фические особенности строения, связанные с передачей возбуждения: они несколько утолщены (их диаметр около 0,005 мкм). Длина этих участков составляет 150-450 мкм. Утолщения могут быть сплошными и прерывистыми. Постсинаптическая мембрана у некоторых синапсов складчатая, что увеличивает поверхность соприкосновения ее с медиатором. Аксо-аксональные синапсы имеют строение, подобное аксо-дендритическим, в них везикулы располагаются в основном с одной (пресинаптической) стороны. Концевая пластинка (нервно-мышечный синапс) имеет свои особенности строения. В ней окончание афферентного волокна, лишенное миелиновой оболочки, очень тонкое (до 2 мкм) и погружено в углубление мышечного волокна. Пресинаптическая и постсинаптическая мембраны концевой пластинки шире и толще, чем в синапсе центральной нервной системы. Каждая мембрана имеет толщину до 0,01 мкм и состоит из трех слоев. Наружный слой постсинаптической мембраны, обращенный в постсинаптическую щель, имеет складчатое строение, что увеличивает его поверхность. В аксоплазме пресинаптической части содержится много митохондрий и везикул (в одном нервном окончании насчитывают до 3 млн. везикул), содержащих ацетилхолин. Диаметр везикул достигает 0,05 мкм.

 








Дата добавления: 2015-05-26; просмотров: 3789;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.