Классификация мышечной ткани. Морфофизиологические особенности исчерченной скелетной и неисчерченной гладких мышц. Ультраструктура и функции миоцита.

Мышечная ткань обладает специальными сократительными органеллами - миофибриллами .

Миофибриллы, состоящие из тонких белковых нитей (миофиламентов), могут быть неисчерченными или исчерченными (поперечно-полосатыми). Соответственно различают неисчерченную и исчерченную мышечную ткань.

1) Неисчерченная мышечная ткань состоит из клеток (гладких миоцитов) веретеновидной формы. Эти клетки образуют мышечные слои в стенках кровеносных и лимфатических сосудов, в стенках внутренних органов (желудок, кишечник, мочевыводящие пути, матка и т.д.). Длина клеток колеблется от 20 мкм (в стенке кровеносного сосуда) до 500 мкм (в стенке матки стельной коровы), диаметр от 2 до 20 мкм. В функциональном отношении неисчерченная мышечная ткань имеет ряд особенностей: она обладает большой силой (например, в кишечнике постоянно передвигаются значительные массы пищи), обладает слабой утомляемостью, медленным сокращением и ритмичностью движений (в стенке кишечника неисчерченная мышечная ткань сокращается 12 раз в минуту, а в селезенке - только 1 раз).

2) Исчерченная мышечная ткань характеризуется наличием исчерченных миофибрилл, имеет 2 разновидности.

А) Исчерченная сердечная мышечная ткань состоит из удлиненных клеток (кардиомиоцитов ) квадратной формы. Их концы, соединяясь друг с другом в цепочки, формируют так называемые функциональные мышечные " волокна" толщиной 10-20 мкм. Тесно связываясь между собой, функциональные мышечные " волокна" образуют мышечную оболочку сердца ( миокард ), постоянные и ритмичные сокращения которого приводят в движение кровь.

Б) Исчерченная скелетная мышечная ткань, в отличие от сердечной, состоит не из клеток, а из многоядерных мышечных образований (миосимпластов) цилиндрической формы. Длина миосимпластов колеблется от нескольких миллиметров до 13-15 см, диаметр от 10 до 150 мкм. Количество ядер в них может достигать нескольких десятков тысяч. Миосимпласты (их еще называют " мышечными волокнами" ) образуют скелетные мышцы и входят в состав некоторых органов (язык, глотка, гортань, пищевод и др.). В функциональном отношении скелетная мышечная ткань легко возбудима и сокращается быстрее, чем неисчерченная (например, в обычных условиях скелетная мышца сокращается в течение 0,1 с, а неисчерченная - в течение нескольких секунд). Но, в отличие от гладких (неисчерченных) мышц внутренних органов, скелетные мышцы быстрее утомляются.

2. Гистогенетическая классификация (в зависимости от источников развития):

1) Соматического типа (из миотомов сомитов) – скелетная мышечная ткань (поперечнополосатая);

2) Целомического типа (из миоэпикардиальной пластинки висцерального листка спланхнотома) – сердечная мышечная ткань (поперечнополосатая);

3) Мезенхимного типа (развивается из мезенхимы) – гладкая мышечная ткань;

4) Из кожной эктодермы и прехордальной пластинки – миоэпителиальные клетки желёз (гладкие миоциты);

5) Нейрального происхождения (из нервной трубки) – мионейральные клетки (гладкие мышцы, суживающие и расширяющие зрачок).

сновным морфо-функциональным элементом нервно-мышечного аппарата скелетных мышц является двигательная единица. Она включает мотонейрон спинного мозга с иннервируемыми его аксоном мышечными волокнами. Внутри мышцы этот аксон образует несколько концевых веточек. Каждая такая веточка образует контакт - нервно-мышечный синапс на отдельном мышечном волокне. Нервные импульсы, идущие от мотонейрона, вызывают сокращения определенной группы мышечных волокон.

Структурной единицей мышечного волокна являются миофибриллы.

Они разделены на чередующиеся участки (диски), которые обладают различными оптическими свойствами.

Диски, обладающие двойным лучепреломлением, получили название анизотропные (А) диски.

Диски, которые не обладают двойным лучепреломлением, названы изотропные (I) диски.

Анизотропные диски в обыкновенном свете выглядят темными и состоят из двух темных полосок, разделенных светлой "H" полоской.

Изотропные диски в обыкновенном свете выглядят светлыми и в середине имеют темную "Z" полоску.

Z полоска – эта тонкая мембрана, которая является продолжением поверхностной мембраны вглубь мышечного волокна.

Она выполняет опорную функцию, поскольку через ее поры проходят протофибриллы.

В зоне Z мембраны также находятся триады или Т-системы триады представляют выпячивания плазматической мембраны с образованием поперечных трубочек в виде ярусов и цисцерн.

Они предсталяют саркоплазматический ретикулум, который содержит высокую концентрацию ионов Ca.

При возбуждении Z мембраны кальций по концентрационному градиенту выходит из саркоплазматического ретикулума в протофибриллярное пространство, вызывая процесс сокращения Активная реабсорбция ионов Са в саркоплазматический ретикулум за счет работы Са-насоса, приводит к расслаблению мышечного волокна.

Структурной единицей миофибриллы являются протофибриллы

Протофибриллы включают белковые нити актина и миозина, а также белки тропонин и тропомиозин.

Нити миозина – это толстые и короткие нити, которые входят только в состав анизотропного диска.

Нити актина – это тонкие и длинные нити, входящие в состав как изотропного, так и анизотропного дисков. Они вставлены между нитями миозина. От них свободна только H-полоска анизотропного диска.

Процесс сокращения происходит в результате скольжения нитей актина относительно нитей миозина, который запускается накоплением Са, при этом образуются актино-миозиновые комплексы (мостики) и нити актина вдвигаются в промежутки между нитями миозина.

Нити актина сближаются друг с другом.

Ширина А-диска (1,6 мкм) всегда остаётся постоянной, тогда как I-диски и H-полоски при сокращении сужаются

 

18.Виды мышечного сокращения: одиночное и тетаническое, механизм их возникновения (Г.Гельмгольц, Н.Е.Введенский). Моторные единицы. Тоническое сокращение гладких мышц.

Для скелетной мышцы характерны три основных режима сокращения:

ИЗОТОНИЧЕСКИЙ – укорочение мышцы без изменения ее тонического напряжения (когда мышце не приходится перемещать груз, например, сокращение мышц языка).

ИЗОМЕТРИЧЕСКИЙ – длина мышечных волокон остается постоянной на фоне увеличения напряжения (попытка поднять непосильный груз)

АУКСОТОНИЧЕСКИЙ – изменение длины сопровождается изменением напряжения (работа мышцы при выполнении трудовых, спортивных и других двигательных актов).

Для скелетной мышцы характерны два вида сокращений:

ОДИНОЧНОЕ сокращение – возникает при действии одиночным стимулом (раздражителем) непосредственно на мышцу (прямое раздражение), или через иннервирующий ее двигательный нерв (непрямое).

ТЕТАНИЧЕСКОЕ (суммированное) сокращение – длительное сокращение мышцы в ответ на ритмическое раздражение.

Одиночное мышечное сокращение - это сокращение мышцы в ответ на раздражение мышцы или иннервирующего ее двигательного нерва одиночным стимулом

Одиночное мышечное сокращение продолжается около 100 мс и развивается по фазам:

Латентный (скрытый) период продолжается до 3 мс и представляет время от начала действия раздражителя до начала видимого ответа (сокращения) мышцы.

Фаза сокращения продолжается 40-50 мс характеризуется укорочением длины мышечного волокна, что связано с увеличением концентрации Сa2+ в протофибриллярных пространствах и образованием актин-миозиновых связей.

Фаза расслабления продолжается 50-60 мс характеризуется увеличением (восстановлением) длины волокна. Возникает при снижении концентрации Ca2+ в протофибриллярных пространствах и ослаблением актин-миозиновых связей.

Если на мышцу наносятся два и более раздражений с интервалом менее продолжительности одиночного сокращения, но более продолжительности рефрактрного периода ПД, то происходит суммация сокращений, в результате которой сократительный эффект усиливается.

Существует два типа суммации: частичная и полная

Частичная (или неполная) суммация возникает, если

интервал между раздражениями меньше продолжительности одиночного мышечного сокращения;

больше продолжительности фазы сокращения, т.е. если второе раздражение попадает в фазу расслабления.

В результате амплитуда мышечного сокращения возрастает с образованием двух вершин.

Полная суммация возникает, если:

интервал между раздражениями меньше продолжительности фазы сокращения, но больше продолжительности рефрактерного периода;

второе раздражение попадает в фазу сокращения.

В результате амплитуда мышечного сокращения изменяется (увеличивается или уменьшается относительно одиночного сокращения) с образованием одной вершины

Увеличение или уменьшение амплитуды связано с изменением возбудимости в процессе возбуждения и зависит от того, в какую фазу измененной возбудимости наносится следующее раздражение.

Учитывая, что в скелетной мышце процесс возбуждения продолжается около 8 мс (латентный период ПД - 2,5 мс плюс пиковый потенциал – около 5 мс), становится понятным, что укорочение мышечного волокна начнется тогда, когда быстрая деполяризация произойдет приблизительно на 1/3 от амплитуды пикового потенциала.

Известно, что в период формирования пикового потенциала возбудимость ткани снижена (фаза абсолютной и фаза относительной рефрактерности). Поэтому, если следующее раздражение будет наноситься в этот период, то амплитуда мышечного сокращения будет снижена.

Период возбуждения в скелетной мышце завершается следовой деполяризацией, продолжающейся от 20 до 40 мс.

В этот период возбудимость, а, следовательно, и сократимость повышена. Поэтому, если следующее раздражение будет приходиться на этот период, то амплитуда мышечного сокращения будет возрастать (тем больше, чем больше повышена возбудимость).

Тетаническое сокращение – это длительное сокращение мышц, возникающее в условиях повторных возбуждений, следующих друг за другом с малым интервалом времени

Различают два вида тетануса: зубчатый и гладкий.

В их основе лежат механизмы частичной или полной суммации.

Вид тетанического сокращения определяется Механическим состоянием мышцы в момент повторного возбуждения. Состоянием возбудимости мышцы в момент повторного возбуждения.

Зубчатый тетанус развивается на ряд последовательных раздражений, интервал между которыми больше продолжительности фазы сокращения, но меньше продолжительности одиночного мышечного сокращения (интервал от 100 до 50 мс при частоте раздражений от 10 до 20 Гц).

При этом каждое новое сокращение формируется на фоне не завершившегося расслабления мышцы, образуя новые вершины последующих сокращений («зубцы»). Высота суммарного сокращения зависит от ритма и силы раздражений и определяется исходным уровнем формирования каждого следующего сокращения (чем выше уровень, тем больше амплитуда).

В начале фазы расслабления этот уровень выше, чем в конце.

Гладкий тетанус развивается на ряд последовательных раздражений, интервал между которыми меньше длительности фазы сокращения, но больше продолжительности потенциала действия (интервал от 50 до 5 мс при частоте 20 до 200 Гц).

Каждое новое сокращение формируется на фоне не завершившегося сокращения мышцы, образуя единую, гладкую вершину. Ее высота определяется уровнем измененной возбудимости в процессе возбуждения.

Если каждый следующий раздражитель попадает в фазу экзальтации (повышенной возбудимости), то амплитуда сокращения будет большой.

Если импульсы попадают в период сниженной возбудимости (относительная рефрактерность), то амплитуда будет снижена.

Явление изменения амплитуды в зависимости от возбудимости мышцы объяснил H.Е.Введенский, введя понятие оптимума и пессимума.

Оптимум – это тетаническое сокращение максимальной амплитуды.

Оптимальная частота – максимальная частота раздражений, при которой возникает максимальная амплитуда тетанического ответа.

Пессимум – снижение амплитуды тетанического сокращения при увеличении частоты раздражений (выше оптимальной величины).

Пессимальная частота – максимальная частота (сверх оптимальной), при которой возникает минимальная амплитуда тетанического ответа.

 








Дата добавления: 2015-05-26; просмотров: 3781;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.012 сек.