Механизм мышечного сокращения. Работа и сила мышц. Утомление мышц.
Механизм мышечного сокращения и расслабления.
Раздражение.
Возникновение потенциала действие.
Проведение возбуждения вдоль клеточной мембраны до Z мембраны, а далее вглубь волокна по трубочкам саркоплазматического ретикулума.
Освобождение Са из триад.
Диффузия Са к протофибриллам.
Взаимодействие Са с тропонином.
Конформационное изменение комплекса тропомиозин-тропонин.
Освобождение активных центров актина.
Присоединение актина к миозину.
В присутствии белка актомиозина распад АТФ с освобождением энергии.
Скольжение нитей актина относительно миозина.
Укорочение миофибриллы.
Активация кальциевого насоса.
Ресинтез АТФ.
Понижение концентрации свободных ионов Са в саркоплазме.
Разрушение актин-миозиновых комплексов.
Обратное скольжение нитей актина относительно миозина.
Увеличение (восстановление) миофибриллы.
Работа и сила мышц. Величина сокращения (степень укорочения) мышцы при данной силе раздражения зависит как от ее морфологических свойств, так и от физиологического состояния. Длинные мышцы сокращаются на большую величину, чем короткие. Умеренное растяжение мышцы увеличивает ее сократительный эффект, при сильном растяжении сокращенные мышцы расслабляются. Если в результате длительной работы развивается утомление мышцы, то величина ее сокращения падает.
Для измерения силы мышцы определяют либо тот максимальный груз, который она в состоянии поднять, либо максимальное напряжение, которое она может развить в условиях изометрического сокращения. Эта сила может быть очень велика. Так, установлено, что собака мышцами челюсти может поднять груз, превышающий вес ее тела в 8,3 раза. Одиночное мышечное волокно может развивать напряжение, достигающее 100-200 мг. Учитывая, что общее число мышечных волокон в теле человека равно приблизительно 15-30 млн., они могли бы развить напряжение в 20-30 тонн, если бы все они одновременно тянули в одну сторону.
Сила мышц при прочих равных условиях зависит от ее поперечного сечения. Чем больше сумма поперечных сечений всех ее волокон, тем больше тот груз, который она в состоянии поднять. При этом имеется ввиду т.н. физиологическое поперечное сечение, когда линия сечения идет перпендикулярно мышечным волокнам, а не мышце в целом. Сила мышц с косыми волокнами больше, чем с прямыми, так как физиологическое ее сечение больше при одинаковом геометрическом. Чтобы сравнить силу разных мышц, максимальный груз (абсолютная сила мышцы), который мышца в состоянии поднять, делят на площадь физиологического поперечного сечения (кг/см.кв.) Таким образом вычисляют удельную абсолютную силу мышцы. Для икроножной мышцы человека она равна 5,9 кг/см.кв., сгибателя плеча - 8,1 кг/см.кв., трехглавой мышцы плеча - 16,8 кг/см.кв.. Работа мышц измеряется произведением поднятого груза на величину укорочения мышцы. Между грузом, который поднимает мышца, и выполняемой ею работой существует следующая закономерность. Внешняя работа мышцы равна нулю, если мышца сокращается без нагрузки. По мере увеличения груза работа сначала увеличивается, а затем постепенно падает. Наибольшую работу мышца совершает при некоторых средних нагрузках. Поэтому зависимость работы и мощности от нагрузки получила название правила (закона) средних нагрузок.
Работа мышц, при которой происходит перемещение груза и движение костей в суставах, называется динамической. Работа мышцы, при которой мышечные волокна развивают напряжение, но почти не укорачиваются - статической. Пример - вис на шесте. Статическая работа более утомительна, чем динамическая.
Утомление мышцы. Утомлением называется временное понижение работоспособ-
ности клетки, органа или целого организма, наступающее в результате работы и исчезающее после отдыха.
Если длительно раздражать ритмическими электрическими стимулами изолированную мышцу, к которой подвешен небольшой груз, то амплитуда ее сокращений постепенно убывает, пока не сойдет до нуля. Регистрируется кривая утомления. Наряду с изменением амплитуды сокращений при утомлении нарастает латентный период сокращения, удлиняется период расслабления мышцы и увеличивается порог раздражения, т.е. понижается возбудимость. Все эти изменения возникают не сразу после начала работы, существует некоторый период, в течение которого наблюдается увеличение амплитуды сокращений и небольшое повышение возбудимости мышцы. При этом она становится легко растяжимой. В таких случаях говорят, что мышца "врабатывается", т.е. приспосабливается к работе в заданном ритме и силе раздражения. После периода врабатываемости наступает период устойчивой работоспособности. При дальнейшем длительном раздражении наступает утомление мышечных волокон.
Понижение работоспособности изолированной из организма мышцы при ее длительном раздражении обусловлено двумя основными причинами. Первой из них является то, что во время сокращений в мышце накапливаются продукты обмена веществ (фосфорная кислота, связывающая Са++, молочная кислота и др.), оказывающие угнетающее действие на работоспособность мышцы. Часть этих продуктов, а также ионы Са диффундируют из волокон наружу в околоклеточное пространство и оказывают угнетающее действие на способность возбудимой мембраны генерировать ПД. Так, если изолированную мышцу, помещенную в небольшой объем жидкости Рингера, довести до полного утомления, то достаточно только сменить омывающий ее раствор, чтобы восстановились сокращения мышцы.
Другой причиной развития утомления изолированной мышцы является постепенное истощение в ней энергетических запасов. При длительной работе резко уменьшается содержание в мышце гликогена, вследствие чего нарушаются процессы ресинтеза АТФ и КФ, необходимых для осуществления сокращения.
Следует оговорить, что в естественных условиях существования организма утомление двигательного аппарата при длительной работе развивается совершенно не так, как в эксперименте с изолированной мышцей. Обусловлено это не только тем, что в организме мышца непрерывно снабжается кровью, и, следовательно, получает с ней необходимые питательные вещества и освобождается от продуктов обмена. Главное отличие состоит в том, что в организме возбуждающие импульсы приходят к мышце с нерва. Нервно-мышечный синапс утомляется значительно раньше, чем мышечное волокно, в связи с быстрым истощением запасов наработанного медиатора. Это вызывает блокаду передачи возбуждений с нерва на мышцу, что предохраняет мышцу от истощения, вызываемого длительной работой. В целостном же организме еще раньше утомляются при работе нервные центры, (нервно-нервные контакты).
Роль нервной системы в утомлении целостного организма доказывается исследованиями утомления в гипнозе (гиря-корзина), установлением влияния на утомления "активного отдыха", роли симпатической нервной системы (феномен Орбели-Гинецинского) и др..
Дата добавления: 2015-05-26; просмотров: 2815;