Определение координат точек методом засечек

2.1.6. Прямая угловая засечка

Сначала рассмотрим так называемый общий случай прямой угловой засечки, когда углы β1 и β2 измеряются на двух пунктах с известными координатами, каждый от своего направления с известным дирекционным углом (рис.2.6).

Рис.2.6

Исходные данные: XA, YA, αAC,

XB, YB, αBD

Измеряемые элементы: β1 , β2

Неизвестные элементы: X , Y

Если αAC и αBD не заданы явно, нужно решить обратную геодезическую задачу сначала между пунктами A и C и затем между пунктами B и D .

Графическое решение. От направления AC отложить с помощью транспортира угол β1 и провести прямую линию AP; от направления BD отложить угол β2 и провести прямую линию BP; точка пересечения этих прямых является искомой точкой P.

Аналитическое решение. Приведем алгоритм варианта, соответствующий общему случаю засечки:

вычислить дирекционные углы линий AP и BP

(2.14) ,

(2.15)

написать два уравнения прямых линий

для линии AP Y - YA= tgα1 ∙ (X - XA),

для линии BP Y - YB= tgα2 ∙ (X - XB) (2.16)

решить систему двух уравнений и вычислить неизвестные координаты X и Y:

(2.17) ,

(2.18)

Частным случаем прямой угловой засечки считают тот случай, когда углы β1 и β2 измерены от направлений AB и BA, причем угол β1 - правый, а угол β2 - левый (в общем случае засечки оба угла - левые) - рис.2.7.

Рис.2.7

Решение прямой угловой засечки методом треугольника соответствует частному случаю засечки. Порядок решения при этом будет такой:

решить обратную задачу между пунктами A и B и получить дирекционный угол αAB и длину b линии AB,

вычислить угол γ при вершине P, называемый углом засечки,

(2.19)

используя теорему синусов для треугольника APB:

(2.20)

вычислить длины сторон AP (S1) и BP (S2) ,

вычислить дирекционные углы α1 и α2:

(2.21)

решить прямую задачу от пункта A к точке P и для контроля - от пункта B к точке P.

Для вычисления координат X и Y в частном случае прямой угловой засечки можно использовать формулы Юнга:

(2.22)

От общего случая прямой угловой засечки нетрудно перейти к частному случаю; для этого нужно сначала решить обратную геодезическую задачу между пунктами A и B и получить дирекционный угол αAB линии AB и затем вычислить углы в треугольнике APB при вершинах A и B

∟BAP = αAB - (αAC + β1) и ∟ABP = (αBD + β2) - αBA .

Для машинного счета все рассмотренные способы решения прямой угловой засечки по разным причинам неудобны. Один из возможных алгоритмов решения общего случая засечки на ЭВМ предусматривает следующие действия:

вычисление дирекционных углов α1 и α2 ,

введение местной системы координат X'O'Y' с началом в пункте A и с осью O'X', направленной вдоль линии AP, и пересчет координат пунктов A и B и дирекционных углов α1 и α2 из системы XOY в систему X'O'Y' (рис.2.8):

X'A = 0 , Y'A = 0 ,

(2.23) ,
(2.24) ,

запись уравнений линий AP и BP в системе X'O'Y' :

(2.26)

Рис.2.8

и совместное решение этих уравнений:

(2.27)

перевод координат X' и Y' из системы X'O'Y' в систему XOY:

(2.28)

Так как Ctgα2' = - Ctgγ и угол засечки γ всегда больше 0о, то решение (2.27) всегда существует.

2.1.7. Линейная засечка

От пункта A с известными координатами XA, YA измерено расстояние S1 до определяемой точки P, а от пункта B с известными координатами XB, YB измерено расстояние S2 до точки P .

Графическое решение. Проведем вокруг пункта A окружность радиусом S1 (в масштабе чертежа), а вокруг пункта B - окружность радиусом S2; точка пересечения окружностей является искомой точкой; задача имеет два решения, так как две окружности пересекаются в двух точках (рис.2.9).

Исходные данные: XA, YA, XB, YB,

Измеряемые элементы: S1, S2,

Неизвестные элементы: X, Y.

Аналитическое решение. Рассмотрим два алгоритма аналитического решения, один - для ручного счета (по способу треугольника) и один - для машинного счета.

Рис.2.9

Алгоритм ручного счета состоит из следующих действий:

решение обратной геодезической задачи между пунктами A и B и получение дирекционного угла αAB и длины b линии AB,

вычисление в треугольнике ABP углов β1 и β2 по теореме косинусов:

(2.29)

вычисление угла засечки γ

(2.30)

вычисление дирекционных углов сторон AP и BP:

пункт P справа от линии AB

(2.31)

пункт P слева от линии АВ

(2.32)

решение прямых геодезических задач из пункта A на пункт P и из пункта B на пункт P:

1-е решение

(2.33)

2-е решение

(2.34)

Результаты обоих решений должны совпадать.

Алгоритм машинного решения линейной засечки состоит из следующих действий:

решение обратной геодезической задачи между пунктами A и B и получение дирекционного угла αAB и длины b линии AB,

введение местной системы координат X'O'Y' с началом в точке A и осью O'X', направленной вдоль линии AB, и пересчет координат пунктов A и B из системы XOY в систему X'O'Y':

(2.35)

запись уравнений окружностей в системе X'O'Y':

(2.36)

и совместное решение этих уравнений, которое предусматривает раскрытие скобок во втором уравнении и вычитание второго уравнения из первого:

(2.37)

откуда

(2.38)

и

(2.39)

Если искомая точка находится слева от линии AB, то в формуле (2.39) берется знак «-», если справа, то «+».

пересчет координат X' и Y' точки P из системы X'O'Y' в систему XOY по формулам (2.2):

(2.40)

2.1.8. Обратная угловая засечка

К элементарным измерениям относится и измерение угла β на определяемой точке P между направлениями на два пункта A и B с известными координатами XA, YA и XB, YB (рис.2.10). Однако, это измерение оказывается теоретически довольно сложным, поэтому рассмотрим его отдельно.

Проведем окружность через три точки A, B и P. Из школьного курса геометрии известно, что угол с вершиной на окружности измеряется половиной дуги, на которую он опирается. Центральный угол, опирающийся на ту же дугу, измеряется всей дугой, следовательно, он будет равен 2β (рис.2.10).

Рис.2.10

Расстояние b между пунктами A и B считается известным, и из прямоугольного треугольника FCB можно найти радиус R окружности:

(2.41)

Уравнение окружности имеет вид:

(2.42)

где XC и YC - координаты центра окружности. Их можно вычислить, решив либо прямую угловую, либо линейную засечку с пунктов A и B на точку C. В уравнении (2.42) X и Y - координаты любой точки окружности, в том числе и точки P, но для нахождения двух координат точки P одного такого уравнения недостаточно.

Обратной угловой засечкой называют способ определения координат точки P по двум углам β1 и β2, измеренным на определяемой точке P между направлениями на три пункта с известными координатами A, B, C (рис.2.11).

Графическое решение. Приведем способ Болотова графического решения обратной угловой засечки. На листе прозрачной бумаги (кальки) нужно построить углы β1 и β2 с общей вершиной P; затем наложить кальку на чертеж и, перемещая ее, добиться, чтобы направления углов на кальке проходили через пункты A, B, C на чертеже; переколоть точку P с кальки на чертеж.

Исходные данные: XA, YA, XA,

YB, XC, YC;

Измеряемые элементы: β1, β2.

Неизвестные элементы: X, Y.

Рис.2.11

Аналитическое решение. Аналитическое решение обратной угловой засечки предусматривает ее разложение на более простые задачи, например, на 2 прямых угловых засечки и одну линейную, или на 3 линейных засечки и т.д. Известно более 10-ти способов аналитического решения, но мы рассмотрим только один - через последовательное решение трех линейных засечек.

Предположим, что положение точки P известно, и проведем две окружности: одну радиусом R1 через точки A, B и P и другую радиусом R2 через точки B, C и P (рис.2.11). Радиусы этих окружностей получим по формуле (2.41):

(2.43)

Если координаты центров окружностей - точек O1 и O2 будут известны, то координаты точки P можно определить по формулам линейной засечки: из точки O1 по расстоянию R1 и из точки O2 - по расстоянию R2.

Координаты центра O1 можно найти по формулам линейной засечки из точек A и B по расстояниям R1, причем из двух решений нужно взять то, которое соответствует величине угла β1: если β1<90o, то точка O1 находится справа от линии AB, если β1>90o, то точка O1 находится слева от линии AB.

Координаты центра O2 находятся по формулам линейной засечки из точек B и C по расстояниям R2, и одно решение из двух возможных выбирается по тому же правилу: если β2<90o, то точка O2 находится справа от линии BC, если β2>90o, то точка O2 находится слева от линии BC.

Задача не имеет решения, если все четыре точки A, B, C и P находятся на одной окружности, так как обе окружности сливаются в одну, и точек их пересечения не существует.

2.1.9. Комбинированные засечки

В рассмотренных способах решения засечек количество измерений принималось теоретически минимальным (два измерения), обеспечивающим получение результата.

На практике для нахождения координат X и Y одной точки, как правило, выполняют не два, а три и более измерений расстояний и углов, причем эти измерения выполняются как на исходных пунктах, так и на определяемых; такие засечки называются комбинированными. Понятно, что в этом случае появляется возможность контроля измерений, и, кроме того, повышается точность решения задачи.

Каждое измерение, вводимое в задачу сверх теоретически минимального количества, называют избыточным; оно порождает одно дополнительное решение. Геодезические засечки без избыточных измерений принято называть однократными, а засечки с избыточными измерениями - многократными.

При наличии избыточных измерений вычисление неизвестных выполняют методом уравнивания. Алгоритмы строгого уравнивания многократных засечек применяются при автоматизированном счете на ЭВМ; для ручного счета используют упрощенные способы уравнивания.

Упрощенный способ уравнивания какой-либо многократной засечки (n измерений) предусматривает сначала формирование и решение всех возможных вариантов независимых однократных засечек (их число равно n-1), а затем - вычисление средних значений координат точки из всех полученных результатов, если они различаются между собой на допустимую величину.

 








Дата добавления: 2015-04-03; просмотров: 6386;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.021 сек.