Золото русских матриц 6 страница

График 3. На диаграмме G1 графика 3 хаотичность исчезла, появилось достаточно медленное, последовательное изменение гравитационного коэффициента ¾ дрейф, несколько напоминающей синусоиду. Диапазон изменений G1, продолжающийся до конца месяца, изо дня в день не выходит за пределы четвертого знака. И только в конце месяца начинаются дрейфовые отклонения в четвертом знаке.

Но вот с сентября группа О. Карагиоза стала проводить эксперименты при неизменном положении эталонной массы, и картина взаимодействий значительно изменилась (график 4). По первым замерам появился дрейф диаграммы G, но не уменьшения, как на весах (диаграмма G2), а возрастания гравитационного коэффициента. Динамику последующих замеров частично отображает диаграмма G1 (тоже хаотичная).

Вывод:

Гравитационная «постоянная» График 4. имеет различную количественную величину для всех тел и изменяется с изменением напряжённости гравитационного поля Земли.

 

 


 

 

3. Механика пульсирующих

взаимодействий

 

3.1. Законы русской механики

 

Выше уже упоминалось, что теоретический аппарат классическая механика считается окончательно разра­ботанным, и никаких оснований для сомнения в этом не существует, поскольку отсутствуют серьезные механиче­ские эксперименты, противоречащие теории. Но есть повод усомниться в столь категорическом утверждении. О слабости и неотработанности, этого аппарата свиде­тельствует, например, очень простенькая игрушка — китайский волчок, называемый иногда волчком Томп­сона. Предполагается, что впервые его запустил англий­ский физик Томпсон. Волчок состоит из пластмассового пустотелого шарика, одна сторона которого срезана почти на пятую часть диаметра и на ее месте находится "ножка", за который волчок приводится во вращение (рис 20 а,б).

Эта детская игрушка весьма и весьма любопытна и знаменита. Ее дви­жение изучали са­мые именитые фи­зики XX века, включая Н. Бора и В. Паули и ... так и не смогли объяс­нить. А вращение волчка действитель­но ори-гинально. Ес­ли его зак-рутить за ножку, то первое время он крутитсякак обыкновенная юла. Затем понемногу заваливается на Рис. 20 а,б. бок, упирается ножкой в поверхность и, переворачиваясь, встает на нее, продолжая свое вращение.

Причем самое существенное, что момент вращения остается тем же, который был получен при его закручивании. А механически это озна­чает, что в какой-то промежуток време-ни имеет место как бы останов волчка и начинается его вращение в противопо-ложном направлении, что, по классическоймеханике, не-возможно. Для примеравозьмите каран­даш, начните вращать его в вертикальном положении, допустим по часо-вой стрелке. Не прекращая вращения, переверните его так, чтобы нижний конец оказался на­верху, и убедитесь, что верхний конец вращается в этом положении против часовой стрелки. Моментвращения изменился. А волчок при перевороте его сохраняет. И непонятно, как и почему у волчка сохраняется это вра­щение? И еще: Откуда берется сила, поднимающая вол­чок? Ведь для подъема на ножку надо преодолеть силу веса, или, что одно и тоже, заменить силу притяжения на силу отталкивания. Возможность же существования силы гравитационного отталкивания не признается классической механикой. Да и волчок уж очень простой прибор, чтобы считать антигравитацию причиной его переворота.

Где-то в конце 60-х годов движение волчка, как пола­гают, удалось математически описать Я. Смородинскому. (Не объяснить, а выразить системой взаимосвязан­ных уравнений, что далеко не одно и то же. Поведение, например, вращающегося гироскопа до сих пор не мо­жет объяснить ни один физик, а математически описать во всех подробностях — пожалуйста.) Позже аналогич­ные описания повторяли и другие исследователи (Карапетян А.В., Маркеев А.П. ...) Вот как Я. Смородинский объясняет поведение китайского волчка на страницах популярного журнала "Наука и жизнь" (№7,1969.)

"На обычный волчок действуют две силы: сила тяже­сти, приложенная к центру тяжести волчка, и реакция опоры. Пара сил, как это полагается по законам механи­ки, поворачивает ось волчка, и он, как говорят, прецессирует — ось волчка все время изменяет свое положение в пространстве.

Мы можем доказать следующее утверждение: если ка­ким-либо образом увеличить скорость прецессии, то центр тяжести волчка поднимается.

Доказать это утверждение можно от обратного, Пред­положим, что мы увеличим скорость прецессии, а центр тяжести в результате опустится. Тогда, как это видно из рисунка 20 а увеличится момент сил действующих на волчок (момент сил равен произведению силы F на дли­ну перпендикуляра, опущенного из центра тяжести О на вектор силы, в данном случае на вертикаль — плечо си­лы). Но тогда скорость прецессии должна еще больше возрасти. А если скорость возрастет, то, согласно сде­ланному предположению, центр тяжести волчка еще больше понизится, и скорость прецессии возрастет еще больше. Ясно, что конец истории будет печальным: вол­чок упадет. Отсюда вывод: наше предположение невер­но, и при увеличении скорости прецессии центр тяже­сти волчка не опускается, а поднимается (курсив везде мой — А. Ч.).

Теперь можно вернуться к волчку Томпсона. Когда мы запускаем такой волчок, то в отличие от детской юлы он касается пола не одной и той же точкой своего сфериче­ского донышка, а перекатывается так, что точка касания волчка с полом "вычерчивает" на волчке кусочек спира­ли. Посмотрим, как ведет себя другой конец волчка — его ножка. Если бы волчок Томсона вращался, как обычная юла, касаясь стола все время одной и той же точкой, то ножка описывала бы окружность с постоян­ной скоростью — волчок прецессировал бы. Из-за того, что волчок Томсона перекатывается па столу, ножка волчка повторяет движение точки касания донышка и скорость прецессии возрастает. А тогда центр тяжести волчка должен подняться. Посмотрев на рисунок 20 б, можно понять, что центр тяжести волчка лежит немного ниже центра шарика: у шарика срезана верхушка. По­этому, когда волчок переворачивается на бок, центр тя­жести его оказывается выше. Продолжая вращаться во­круг горизонтальной оси, волчок переворачивается на ножку, центр тяжести занимает самое высокое положе­ние, и волчок спокойно продолжает вращаться.

Значит единственное условие, которому должна удовлетворять форма волчка состоит в том, что при его переворачивании центр тяжести должен все время подниматься.

В заключение проделайте с волчком поучительный опыт (мне о нем рассказал Oгe Бор, сын Нильса Бора) Насыпьте на пол или на стол тонкий слой пудры (мела или муки) и запустите волчок. После того, как волчок перевернулся, осмотрите его. Вы увидите нарисованную пудрой линию, по которой двигалась точка касания волчка с полом или столом. Линия эта закручивается спиралью, но в одном месте она начинает раскручи­ваться в обратную сторону. Попробуем объяснить и это явление.

Закон сохранения количества движения требует, что­бы волчок вращался в одну и ту же сторону, как в ис­ходном положении, так и в перевернутом. Пусть, на­пример, он начал вращаться по часовой стрелке (если смотреть на него сверху) — так он будет вращаться, если вы его запустили правой рукой. Если бы, не переставая вращаться вокруг своей оси, волчок перевернулся, то в перевернутом состоянии он уже вращался бы против ча­совой стрелки. Значит, для того, чтобы все было по за­конам физики, волчок, в какой-то момент должен пре­кратить вращаться вокруг оси(?? – А.Ф.), проходящей вдоль "ножки", а затем завращаться в обратную сторону. Это произойдет тогда, когда волчок будет лежать на бо­ку и вращаться вокруг оси, проходящей через его бока".

Имеются большие сомнения в корректности получен­ного Я. Смородинским математического описания и объ­яснения механизма вращения китайского волчка, по­скольку в процессе его движения включается останов вращения и продолжение вращения волчка после оста­нова в противоположном направлении. Можно считать, что теоретическое объяснение механизма переворота волчка Томпсона отсутствует. И это не единственный необъяснимый эксперимент в классической механике. Эксперименты Ю.И. Крюкова, В.И. Чичерина, Р.И. Ро­манова, В.П. Селезнева, А.И. Вейника, Ю.Г. Белостоцкого, С. Маринова и многих, многих других авторов (некоторые из них будут описаны ниже) не находят объ­яснения. Инерцоиды В.Н. Толчина и его последователей до сих пор отвергаются, поскольку тоже остаются не­объяснимыми, что само по себе свидетельствует о не­благополучии в классической механике с теорией. Но обо всем по порядку. Сейчас же вернемся к законам классической механики и рассмотрим возможность их расширенного понимания. Кстати, о неполноте этих за­конов неоднократно упоминала в своих работах Е. Блаватская.

Повторюсь:Классическая механика,детище механики Ньютона, базируется на четырех незави­симых основных понятиях: пространство, время, си­ла и масса. Тело как объект исследования этой меха­никой не рассматривается, именно поэтому в физической литературе отсутствует определение понятия «тело».Пространство и время вводятся постулативно и являются внешним фоном всех событий (т.е. пространство и время являются не взаимосвязанными «субстанциями»). Масса (не как свойство, а как количество вещества, т.е. как тело) и сила (как причина движения) вполне самостоятельны и не­зависимы. Связь между ними декларируется только в оп­ределенной последовательности взаимодействий и в основном в аксиоматической форме, но как отображе­ние взаимозависимости единой системы взаимодейст­вия свойств связь отсутствует.

В основу современной физики положены два вида движения (перемещение и вращение) и четыре зако­на механики Ньютона: закон инерции (?? – А.Ф.), закон импульса, закон взаимодействия тел и закон всемирного тяготе­ния. Оказался пропущенным основной вид движения – пульсация тел, их самодвижение. То движение, которое обуславливает взаимодействие тел как с пространством, в котором они находятся или перемещаются, так и с другими телами. Отсутствие пульсации (самодвижения) оторвало движение от материи, убрало из механики (как и из физики) взаимодействие тел с пространством, превратило пространство в мыслимую мнимость — пустоту (в физический вакуум — та же пустота), заменило понимание физических процессов их математической формализацией и не позволило, до настоящего времени, осуществить переход от механики точки (математической абстракции) к механике материального тела.

Особенность законов механики заключается в том, что описания процессов единой природы производится по законам, ме­жду которыми отсутствует какая бы то ни было связь. Они полностью самостоятельны и независимы. И хотя имеются рассуждения о том, что первый закон, в общем-то, можно вывести из второго, вывод этот сопро­вождается постулированием потери "удерживаемым в состоянии покоя" телом как минимум двух своих свойств: силы – F и напряженности гравитационного поля – g (что возможно в математике, но невоз­можно в природе). А, как уже говорилось, постулирова­ниеотсутствия какого либо свойства у тела равнозначно отсутствию самого тела. То есть тело превращается в математическую фикцию. Закон, в котором формулиру­ется поведение тела-фикции, не может быть коррект­ным, а отсутствие связи его с другими законами сви­детельствует о формальности соединении их в одну систему. Эта формальность и обусловила последующее дробление физики на самостоятельные, не связанные между собой разделы. Приведем формулировку законов в той записи, в которой они изложены в «Математических на­чалах натуральной философии» [5], и коротко проанали­зируем их:

Первый закон (аксиома): «Всякое тело продолжает удерживаться в своем состоянии покоя или равномер­ного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние».

Математическая запись закона (отметим, что матема­тическая формализация закона произведена не самим Ньютоном, но является на сегодня общепризнанной.) [18]:

а = 0 если Fрез. = 0, (3.1)

где Fpез. – векторная сумма всех сил, действующих на тело, а – ускорение тела. (Полагаю, что обозначение а, как и название, некорректны. В законе говорится не об ускорении, а о напряженности гравиполя тела – g, ко­торая имеет ту же размеренность и наблюдается как ускорение а при движении тела или как напряженность – g, когда тело находится в «покое».)

К тому же математическая формализация (3.1) не со­ответствует содержанию закона. В ней отсутствуют, ка­кие бы то ни было, признаки тела, находящегося в неко­тором состоянии и естественно, что свойства этого "ничего" можно приравнивать 0. Но тогда записанные равенства есть безадресная, ничего не отображающая математическая абстракция. Кроме того, как отмечает И. Горячко [60]:

«Несмотря на простоту формулировки, первый закон неявновводит в обращение большое количество объек­тивных и субъективных принципов построения класси­ческой механики как теории взаимодействий:

• принцип существования материи как вещества (наличие тела и окружающей среды), (добавлю — телесной – А.Ч.);

• принцип инерции (свойство тела находиться в состоянии покоя или равномерного прямолинейного движения в отсутствии действия на него внешних сил), (да и сам принцип инерции вводится искусственно, без учета телесности пространства. – А.Ч.);

• принцип относительности [связанный с возмож­ностью определения состояния тела по отношению к другому телу, к самому себе или к системе отсчета в зависимости от скорости движения (эти два прин­ципа, инерции и относительности, в природе отсут­ствуют. Они следствие постулатов классической ме­ханики.– А.Ч.)];

• принцип причинности (связанный с возможно­стью определения состояния тела в каждый после­дующий момент времени);

• принцип равномерно текущего времени и изо­тропности окружающей среды (за равные проме­жутки времени тело при равномерном движении проходит равные расстояния);

• принцип взаимодействия (изменения состояния тела возникают не из ничего, а только в результате его взаимодействия с другими телами или с окру­жающей средой);

• принцип сохранения телом постоянной массы в состоянии покоя или равномерного движения (постулируемое постоянство массы – А.Ч.).

Нетрудно заметить, что первый закон не предусматри­вает каких-либо ограничений по скорости движения те­ла (и оговаривает неизменности массы тела – А. Ч.).

И все-таки нельзя считать, что формулировка этого закона является исчерпывающей. Действительно, доста­точно лишь указать на возможность движения тел по идеальной окружности,чтобы это утверждение стало вполне очевидным» (отмечу, что в анизотропном пространстве невозможно появление «идеальной окружности» по определению – А.Ч.).

И хотя абстрагирования в законе достаточно для ото­бражения состояния тоже абстрактного тела-точки, за­кон все же оперирует не с фантомными образованиями. Когда же приходит время, использовать его по отноше­нию к реальному телу, допустим при воздействии на это тело с некоторой силой, и в математической формализа­ции данного тела должны быть подставлены именно те параметры, которые отображают скомпенсированные внутренние взаимосвязи (инварианты) именно данного тела. Скомпенсированность же определенных свойств тел отображается либо инвариан­тами, либо уравнениями (теми же инвариантами). Поскольку определяется сила в момент воздействия на тело, а, следовательно, и сила сопротивления тела этому воздействию, необходимо знать, какой силой «обладало» это тело до воздействия на него. Точнее, с какой силой тело взаимодействовало с окружающим вещественным пространством, сопротивляясь этому воздействию. Знание уравнения взаимодействия тела с эфирным пространст­вом становится тем основанием, которое определяет структуру I закона механики.

Естественно, что в это уравнение должны входить те параметры, которые включает в себя I закон механики: масса и напряженность гравитационного поля самого тела. Для примера найдем собственную напряженность гравиполя железного шарообразного тела радиусом R = 25 см. Его масса т = 525 г., круговая частота собственной пульсации шара ω = 1,773·10-3 сек-1. Оп­ределяем напряженность гравиполя шара gт:

gт = Rω2 = 7,858·10-5 см/сек-2. (3.2)

gт = vω, (3.3)

где v – скорость, с которой происходит самопульсация (например, первая космическая скорость для Земли).

Из (27)-(28) следует, что напряженность гравиполя всех тел обусловлена свойством их самопульсации. Причём собственная напряженность гравиполя тела -gт отображает волновое сопротивление тела воздействию внешнего гравиполя и поэтому имеет знак минус. Находим внутреннюю силу Fв, с которой шар сопротивляется гра­витационному воздействию Земли:

Fв = - mvω = - mgв = - 0,041см.г.сек-2. (3.4)

Это очень важный физический параметр -Fв. Он свидетельствует о том, что тело сопротивляется «притяжению» Землю с силой -Fв. Земля же «притягивает» (приталкивает к себе) тело с силой равной его весу, т.е. для железного тела радиусом R = 25 см с силой Fз = Рр = 5,15·105 см.г.сек-2 или на семь порядков сильнее чем тело отталкивается от Земли. И утверждения классической механике о том, что Земля притягивает тело с той же силой, с которой тело притягивает Землю, отображает отсутствие ясного понимания процесса гравитационного взаимодействия.

Повторю: Тело приталкивается к Земле напряжённостью +gз её гравиполя и сопротивляется приталкиванию, отталкиваясь напряжённостью –gт. Тело не притягивает Землю, а отталкивается от неё с силой Fв = -0,041 см.г.сек-2.

Следовательно истинный вес тела Pи на поверхности Земли равен:

Pи = Рр – Fв.

Естественно, что найденная сила Fв = -0,041 см.г.сек-2 очень незначительная величина по отношению к весу тела, и ее без всякого ущерба для расчета можно игнориро­вать. Но наличие данной величины как физического фактора отбросить принципиально невозможно. Её наличие в уравнении есть свидетельство реальности и индивидуальности того тела, которое участвует в природном процессе и не позволяет производить приравнивания ни силы взаимодействия с пространством, ни напряженности его гравиполя к нулю. Малая величина силы Fв = -0,041 см.г.сек-2 тела, находящегося в относительном «по­кое», при математической формализации входит в уравнение II закона механи­ки в виде основы и определяет его постоянную часть, возрастаю­щую при внешнем воздействии. Все остальные силы возникают только при внешнем воздействии на тело (шар).

Таким образом, пульсирующий (обладающий, как и все тела на поверхности Земли, так называемым «нуле­вым колебанием») железный шар, находящийся в отно­сительном покое (относительный покой — отсутствие перемещения относительно окружающего вещественно­го пространства, а по И. Ньютону — относительно окружающих вещественных тел), действует на телесное простран­ство с силой Fв = - 0,041см.г.сек, отталкиваясь от гравиполя Земли, и это воздействие будет оставаться неизменным в течение достаточно неопреде­ленного времени. Аналогичное силовое воздействие, образуемое каждым телом, должно входить в I закон ме­ханики, формализованный следующим образом:

gт = -vтωт − const ≠ 0, (3.5)

Fв = -mтgт − const' ≠ 0. (3.6)

Параметры Fв и gт неизменны для данного уравнения не потому, что не могут меняться, а пото­му, что для этого изменения необходимо приложение внешней силы, т.е. изменения его качественного состояния. И первый закон механики может быть сформулирован, придерживаясь определения И. Ньютона, следую­щим образом:

Всякое тело, взаимодействуя, с вещественным пространством, продолжает удерживаться в со­стоянии относительного покоя или абсолютного движения пока и поскольку оно не понуждается при­ложенными усилиями изменить это состояние.

Слова "абсолютное движение" констатируют в зако­не невозможность относительного перемещения в ве­щественном пространстве (невозможность относи­тельного движения). Т.е. невозможность движения без взаимодействия с окружающим пространством. Все перемещения в эфире абсо­лютны.

Формулировка второго закона механики, закона им­пульса, накрепко усваивается еще при про­хождении школьного курса физики и становится азбуч­ной истиной для каждого образованного человека. Приведу ее:

Второй закон (аксиома): «Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует».

Уравнение, описывающее этот закон, тоже было предложено не И. Ньютоном, а его последователи оста­новились на следующей математической формализации закона:

Fрез =dP/dtили F= та, (3.7)

где P = mv1 − импульс тела, m − масса тела (количество вещества??), v1 − ско­рость движения тела, t − время, а − ускорение (здесь тоже должно быть g, но поскольку привычно а, оставим его).

И эта формализация безадресная. Никакие свойства конкретного тела в ней отражены быть не могут. Сила в классической механике возникает как следствие мате­матической операции с некоторой абстрактной массой математи­ческой точки, не имеющей никакого отношения ни к одному телу, и тем более ни к каким свойствам тел.

В формулировке закона очень важно понятие «коли­чество движения». Оно предполагает наличие этого движения ещё до воздействия силы. Авот уравнение (3.7) не отражает никакого движения до появления си­лы. И по нему, только появившаяся извне приложенная сила вызывает движение. Широкое понятие «количество движения», предполагающее все виды движения тела и не исключающее возможности взаимодействия с окру­жающим пространством, прямолинейные потомки огра­ничили частностью, исправив «количество движения» на «импульс материальной точки». Последняя (точка), кроме абстракции, из себя ничего не представляет и ни с чем не взаимодействует, поскольку не имеет размеров. Более того, ее взаимодействия с чем бы то ни было невозможно по определению. И потому формулировка закона вклю­чает только один вид движения — поступательное и яв­ляется отображением закона сохранения импульса (абстракция) движущейся прямолинейно (абстракция) по инерции (абстракция) материальной точки (абстрак­ция). Можно сказать — включает закон абстрактной мнимости.

И хотя в этой формулировке закон в течение почти трех столетий не вызывал никакой озабоченности у уче­ного мира, чрезмерная заабстрагированность сама сви­детельствует о его недостаточной общности и расплыв­чатости (ненадежности). И, видимо, поэтому за прошедший период так и не состоялся в законе переход от движущейся в пространстве абстракции — точки к движению реального физического тела в том же про­странстве. А потому нет надежных способов описания движения тела по второму закону механики [61]. Более того, в существующей редакции закон включает в себя только прямолинейное движение точки без вращения и без взаимодействия с окружающим пространством. Оно и понятно — мнимость — точка не имеет свойств и ни с чем не взаимодействует, и потому не может участвовать в описании, как процессов движения тел, так и их различных взаимодействий.

Несколько шире учитывается взаимодействие с про­странством, закон сформулирован в [62], но тоже огра­ничен поступательным движением. И только, по-видимому, работа И.Е. Пехотина [61] позволяет, наконец, подойти к проблеме полного понимания поступательно­го и вращательного движения не точки, а тела в про­странстве, и к новой формулировке II закона механики. Рассмотрим взаимодействия и формы движения тела, которые содержатся в структуре II закона механики и изменяются под воздействием внешней силы:

• самопульсация и пульсация тел;

• наличие взаимодействия с вещественным простран­ством;

• поступательное движение;

• криволинейное, вращательное движение.

Данные формы охватывают весь диапазон движения телесных образований. А поскольку II закон относится к категории наиболее общих законов механики, все они в той или иной мере должны получить отображение в этом законе. Достаточно узкое понятие «импульс тела», как произведение его скорости на массу, которого не было у И. Ньютона, получило в современной физике широкое распространение как фактор энергетической потенции тела. Но, как это ни удивительно, до сих пор считается, что вращающееся тело не обладает импуль­сом, а потому полное количество движения, как оно за­писано во II законе, ограничивается импульсом его по­ступательного движения. То, что тело при поступа­тельном движении в пространстве всегда обладает вращательным движением, не принимается во внимание. Поскольку точка не тело и потому не может взаимодействовать с пространством и вращаться, не возникало и вопроса о необходимости распространения действия II закона ме­ханики на описание вращательного движения. Похоже, что впервые на это обратил внимание и решил задачу одновременного описания поступательно-вращатель­ного движения И.Е. Пехотин. Кратко, ориентируясь на [61], изложу это описание.

II закон механики в формулировке Ньютона предпола­гает, что на движущееся поступательно тело действует внешняя сила, приложенная в центре масс и не обра­зующая вращательного момента, само же тело не взаимодействует с пространством, в котором оно движется. А потому тело можно рассматривать как точку, в которой сосредоточена вся его масса. Однако в естественных условиях всякое тело, как это отмечал еще Декарт, «имеет протяженность в длину, ширину и глубину». Линия же действия приложен­ной силы (как вариант равнодействующей нескольких внешних сил) очень редко бывает приложена строго в точке цен­тра масс тела, а значительно чаще — на некотором рас­стоянии от него или в геометрическом центре тела.

Другая, но более слабая для макромира, причина воз­никновения вращения в основном в космосе — враще­ние собственного гравиполя тела. Движущее в пространстве тело взаимодействует с гравиполем пространства своим вращающимся гравиполем, и это вращение практически никогда не совпадает с движением внешнего гравиполя. Именно это несовпадение обусловливает всем движущимся в космосе телам вращение относительно своей оси. В результате та­ких воздействий между центром масс и точкой приложения силы образуется плечо h и возникший мо­мент, как произведение силы на плечо, стремится по­вернуть тело. По этой причине большинство небесных тел (можно смело сказать что все, включая планеты, звезды, галактики и т.д.) вращаются при свободном поступательном движении.

Это, по-видимому, привело И.Е. Пехотина к выводу об од­носторонности формулировки II закона механики из-за отсутствия корректного описания вращательных взаи­модействий тел и к необходимости уточнения этого взаимодействия [61]. Свои выводы И.Е. Пехотин делал на основе проводимых им экспериментов с телами (шара­ми) массой т. (На рис. 21а изображено такое тело — шар радиусом r и с пазом, на который навивается шнур. На изображении: а − вид спереди, б − вид с боку, с − вид сверху.) Шар подвергался воздействию аналогично­го тела, соединенного с ним прочным шнуром и движу­щегося со скоростью v относительно пространства. Ли­ния действия силы F проходит на расстояний h от центра масс шара.

Рисунок 21г отображает схему одного из экспери­ментов по проверке закона сохранения момента импуль­са. В этом эксперименте стальной шар (рис. 21а) мас­сой 1 кг выбрасывался пусковым устройством с начальной скоростью v = 20 м/с под углом 45° к гори­зонту и приземлялся на расстоянии S = 41 м от пусково­го устройства. Начальная скорость шара определялась формулой:

v = √gS = 20 м/c. (3.8)

После достижения устой-чивой начальной скорости шара 20 м/с к нему капроновым шнуром прик-реплялся другой стальной шар такой же массы с канавкой, в ко­торой размещалось два вит-ка шнура. В начале экспе-римента шар 1 находился в пусковом устройстве, а шар 2 лежал рядом с устройством. После выбрасывания устрой- Рис. 21а-г. ством шара 1 последний взаимодействовал через шнур с шаром 2 и, совершив совместный полет, центр масс их падал на расстоянии S1 или S2 от пускового устройства в зависимости от того, изменялась ли скорость вращательного движения шара 2 или не изменялась. Иначе говоря, дальность полета связки двух шаров определялась тем, в каком состоя­нии летел второй шар, вращаясь или нет. Превраща­лась кинетическая энергия поступательного движения шара 1 в кинетическую энергию вращательного движе­ния шара 2 или не превращалась.

Если в начальный момент шнур не был навит на шар 2, т.е. при взаимодействии кинетическая энергия посту­пательного движения шара 1 не превращалась в энер­гию вращения шара 2, то центр масс системы шар 1 плюс шар 2 падал на расстоянии 9,2-9,4 м от пускового устройства. Если же в начальный момент шнур был на­вит на шар 2, и при взаимодействии шар 2 начинал вращаться, то после взаимодействия центр масс систе­мы шары падал на расстоянии 6,0-6,2 м от пускового устройства.








Дата добавления: 2015-02-19; просмотров: 733;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.031 сек.