Электрический колебательный контур. Формула Томсона
Электромагнитные колебания могут возникать в цепи, содержащей индуктивность L и емкость C (рис.4.1). Такая цепь называется колебательным контуром. Возбудить колебания в таком контуре можно, например, предварительно зарядив конденсатор от внешнего источника напряжения, соединить его затем с катушкой индуктивности.
Поскольку внешнее напряжение к контуру не приложено, сумма падений напряжений на емкости и индуктивности должна быть равна нулю в любой момент времени:
откуда, учитывая, что сила тока , получаем дифференциальное уравнение свободных незатухающих колебаний электрического заряда в колебательном контуре
.
Если ввести обозначение
то полученное уравнение принимает вид:
.
Решением этого уравнения, как известно, является функция
.
Таким образом, заряд на обкладках конденсатора изменяется по гармоническому закону с частотой ω0, называемой собственной частотой колебательного контура. Период колебаний определяется по формуле Томсона:
Напряжение на конденсаторе:
,
где - амплитуда напряжения.
Сила тока в контуре:
.
Сопоставляя полученные выражения, видим, что когда напряжение на конденсаторе, а значит энергия электрического поля, обращается в нуль, сила тока, а, следовательно, энергия магнитного поля, достигает максимального значения (рис.4.2). Таким образом, электрические колебания в контуре сопровождаются взаимными превращениями энергий электрического и магнитного полей.
Амплитуды тока Im и напряжения Um связаны между собой очевидным соотношением:
.
Дата добавления: 2015-02-13; просмотров: 5825;