Метод трапеций вычисления определенных интегралов.

В этом методе подынтегральная функция f(x) на интервале [xi,xi+1] заменяется полиномом первой степени, т.е. наклонной прямой линией. Обычно эта прямая проводится через значения f(x) на границах интервала (рис.6.6). В этом случае приближенное значение частичного интеграла определяется площадью трапеции:

Рис.6.6. Геометрическая интерпретация метода трапеций , т.е. , а численное значение интеграла на всем [a,b] . Это вычислительная формула метода трапеций.   (6.12)     (6.13)

Выражение для главного члена погрешности частичного интеграла:

.

Тогда главный член полной погрешности метода трапеций имеет вид

,   (6.18)

т.е. метод трапеций имеет также второй порядок, но его погрешность в два раза больше, чем в методе средних прямоугольников, поэтому, если подынтегральная функция задана аналитически, то предпочтительнее из методов второго порядка использовать метод средних прямоугольников.








Дата добавления: 2015-01-15; просмотров: 1211;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.