Методы прямоугольников вычисления определенных интегралов.

Данные методы относятся к простейшим из класса методов Ньютона-Котеса. В них подынтегральная функция f(x) на каждом интервале разбиения заменяется полиномом нулевой степени, т.е. константой. Такая замена является неоднозначной, т.к. константу можно выбрать равной значению f(x) в любой точке данного интервала разбиения.

В любом случае значение частичного интеграла определяется как произведение длины интервала разбиения на выбранную константу, т.е. как площадь прямоугольника. В зависимости от способа выбора аппроксимирующей константы различают методы левых, средних или правых прямоугольников (рис.6.4).

 

Левые Средние Правые

Рис.6.4. Геометрическая интерпретация методов прямоугольников

 

Введем следующие обозначения: точку a на оси OX обозначим через x0, точку b - через xn, а точки разбиения промежутка [a,b] - через x1, x2,..., xn-1. Предполагается, что длина интервала разбиения постоянна на всем [a,b]. Обозначим ее через h:

; xi= xi-1 + h, i =1,2,...,N.

Тогда в методе левых прямоугольников площадь каждого i-го прямоугольника

Si = h f(xi), i = 0,1,2,...,n-1, (6.2)

а для всего промежутка [a,b]:








Дата добавления: 2015-01-15; просмотров: 1202;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.