Графоаналитическое разложение кривых в ряд Фурье
Когда несинусоидальная кривая задана графиком или таблицей и не имеет аналитического выражения, для определения её гармоник прибегают к графоаналитическому разложению. Оно основано на замене определенного интеграла суммой конечного числа слагаемых. С этой целью период функции f(ωt) разбивают на n равных частей Δωt=2π/n (рис.6.6).
Тогда для нулевой гармоники
где: р – текущий индекс (номер участка), принимающий значения от 1 до n;
fр(ωt) – значение функции f(ωt) при ωt=р·Δωt (см. рис.6.6).
Для амплитуды синусной составляющей k–ой гармоники
.
Для амплитуды косинусной составляющей k–ой гармоники
.
Здесь sinpkωt и cospkωt - значения sinkωt и coskωt при ωt=р·.
В практических расчетах обычно принимают n=18 (Δωt=20˚) или n=24 (Δωt=15˚).
При графоаналитическом разложении кривых в ряд Фурье еще важнее чем при аналитическом выяснить, не обладает ли она каким-либо видом симметрии, наличие которых существенно уменьшает объем вычислительной работы. Так, формулы для и при наличии симметрии принимают вид
.
При построении гармоник на общем графике необходимо учитывать, что масштаб по оси абсцисс для k–ой гармоники в k раз больше, чем для первой.
Лекция №29. Максимальное, среднее и действующее значения несинусоидальных величин
Цель: выдать более глубокие знания по цепям переменного тока.
Задача: научить определять параметры цепей периодичного несинусоидального тока.
Периодические несинусоидальные величины, помимо своих гармонических составляющих, характеризуются максимальным, средним и действующим значениями. Максимальное значение Аm– это наибольшее в течение периода значение модуля функции (рис.6.7).
Среднее по модулю значение определяется так
.
Если кривая симметрична относительно оси абсцисс и в течение полупериода ни разу не изменяет знак, то среднее по модулю значение равно среднему значению за полпериода
,
причем в этом случае начало отсчета времени должно быть выбрано так, чтобы f(0)=0.
Если функция за весь период ни разу не изменяет знак, то её среднее по модулю значение равно постоянной составляющей.
В цепях несинусоидального тока под величинами ЭДС, напряжений или токов понимают их действующие значения, определяемые по формуле
.
Если кривая разложена в ряд Фурье, то её действующее значение может быть определено следующим образом
Поясним получение результата. Произведение синусоид разной частоты (kω и iω) представляет собой гармоническую функцию, а интеграл за период от любой гармонической функции равен нулю. Интеграл, находящийся под знаком первой суммы, определялся в цепях синусоидального тока и там было показано его значение. Следовательно,
.
Из этого выражения вытекает, что действующее значение периодических несинусоидальных величин зависит только от действующих значений её гармоник и не зависит от их начальных фаз ψk.
Приведем пример. Пусть u=120 sin(314t+45˚)-50 sin(3·314t-75˚) B. Его действующее значение
Бывают случаи, когда среднее по модулю и действующее значения несинусоидальных величин могут быть рассчитаны на основании интегрирования аналитического выражения функции и тогда нет необходимости раскладывать кривую в ряд Фурье.
В электроэнергетике, где кривые преимущественно симметричны относительно оси абсцисс, для характеристики их формы используется ряд коэффициентов. Наибольшее применение получили три из них: коэффициент амплитуды kа, коэффициент формы kф и коэффициент искажения kи. Они определяются так: kа=Am/A; /Aср; kи=A1/A.
Для синусоиды они имеют следующие значения: kа= ; kф=πAm/2 Am≈1.11; 1.
Для кривой прямоугольной формы (рис.6.8,а) коэффициенты таковы: kа=1; kф=1; kи=1.26/ .
Для кривой заостренной (пикообразной) формы (рис.6.8,б) значения коэффициентов следующие: kа> и тем выше, чем более пикообразной является её форма; kф>1.11 и тем выше, чем заостреннее кривая; kи<1 и чем более заостренная кривая, тем меньше.
Как видим рассмотренные коэффициенты в определенной степени характеризуют форму кривой.
Укажем одно из практических применений коэффициента искажения. Кривые напряжения промышленных сетей обычно отличаются от идеальной синусоиды. В электроэнергетике вводится понятие практически синусоидальной кривой. По ГОСТ напряжение промышленных сетей считается практически синусоидальным, если наибольшее отличие соответствующих ординат истинной кривой и её первоё гармоники не превышает 5% от амплитуды основной гармоники (рис.6.9).
Измерение несинусоидальных величин приборами различных систем дает неодинаковые результаты. Амплитудные электронные вольтметры измеряют максимальные значения. Магнитоэлектрические приборы реагируют только на постоянную составляющую измеряемых величин. Магнитоэлектрические приборы с выпрямителем измеряют среднее по модулю значение. Приборы всех остальных систем измеряют действующие значения.
Дата добавления: 2015-03-26; просмотров: 1113;