Числовые характеристики дискретных случайных величин

Характеристикой среднего значения случайной величины служит математическое ожидание.

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на соответствующие им вероятности:

М(X) = x1p1+ x1p2+…+ xnpn.

 

Характеристиками рассеяния возможных значений случайной величины вокруг математического ожидания являются дисперсия и среднее квадратическое отклонение.

Дисперсией случайной величины X называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:

D(X) = M[X – M(X)]2.

Дисперсию удобно вычислять по формуле

D(Х) = М(X2) [М(Х)]2.

Средним квадратическим отклонением случайной величины называют квадратный корень из дисперсии:

.








Дата добавления: 2015-03-26; просмотров: 705;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.