Скорость точки

 

Быстроту движения точки характеризует ее скорость, к определению которой мы сейчас переходим. Пусть в момент времени точка находится в положении , которое

 
Рис.1.4
 

определяется радиусом–вектором , а в момент переходит в положение , радиус–вектор которого (Рис.1.4). Вектор называется вектором перемещения точки за время . Если разделить вектор перемещения на , получим вектор того же направления, что и , который определяет среднюю по модулю и направлению скорость точки за время . Понятно, что средняя скорость зависит от выбранного промежутка времени и тем точнее характеризует быстроту движения, чем меньшим выбран промежуток времени .

Скоростью точки в данный момент времени называется предел отношения вектора перемещения к промежутку времени, за который это перемещение произошло, при величине промежутка времени, стремящейся к нулю:

 

(1.3)

 

Таким образом,

 

вектор скорости равен первой производной по времени от радиуса-вектора точки.

 

В пределе при секущая , по которой направлен вектор средней скорости, занимает положение касательной к траектории в точке . Следовательно,

 

вектор скорости направлен по касательной к траектории, причем в сторону движения точки.

 

Пусть движение точки задано в координатной форме, т.е. уравнениями (1.1). Используя равенство (1.2) и учитывая, что орты координатных осей со временем не изменяются, получаем:

(1.4)

Таким образом,

 

проекции вектора скорости на оси координат равны первым производным по времени от соответствующих координат точки:

 

(1.5)

 

 








Дата добавления: 2014-12-18; просмотров: 594;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.