Интеграл от корня из дроби

Интеграл, который мы рассмотрим, встречается достаточно редко, но я буду очень рад, если единственный пример данного параграфа вам поможет.

Корнями всё начиналось, корнями и закончится. Рассмотрим неопределенный интеграл:
, где – числа. Руководствуясь законом подлости, считаем, что все эти числа коэффициенты не равны нулю. Это уже не смешно, так обычно и бывает.

В подынтегральной функции у нас находится корень, а под корнем – дробь, в числителе и знаменателе которой располагаются линейные функции.

Метод стар – необходимо избавиться от корня. Стар и уныл, но сейчас станет веселее, поскольку придется проводить непростую замену.

Замена, с помощью которой мы гарантированно избавимся от корня, такова:

Теперь нужно выразить «икс» и найти, чему равен дифференциал .

Выражаем «икс»:

Теперь найдем дифференциал:

Зачем были эти нелепые скучные телодвижения?

Я вывел готовые формулы, которыми можно пользовать при решении интеграла вида !

Формулы замены таковы:

Это было ни в коем случае не хвастовство, просто я не смог быстро найти эти формулы в близлежащей литературе и Сети – оказалось проще вывести. Да и может быть кто-нибудь для реферата возьмет.

Опять – двадцать пять, заключительный пример:

Пример 25

Найти неопределенный интеграл

Проведем замену:

В данном примере:

Таким образом:

Еще куда ни шло, могло всё оказаться значительно хуже. Такой интеграл, кстати, уже фигурировал в Примере 13. Интегрируем по частям:

Проведем обратную замену. Если изначально , то обратно:

Некоторым страшно, а я это продифференцировал, ответ верный!

Иногда встречаются интегралы вида , , но это нужно быть либо слишком умным либо попасть под раздачу. Идея та же – избавиться от корня, причем во втором случае, как все догадались, следует проводить подстановку и самостоятельно выводить, чему будет равняться дифференциал .

Теперь вам практически любой интеграл по силам, успехов!

 

Решения и ответы:

Пример 2:Решение:

Проведем замену:


Интегрируем по частям:

Пример 3:Ответ:

Пример 4:Ответ:

Пример 6:Решение:

Интегрируем по частям:


Таким образом:

В результате:

Пример 8:Решение:
Дважды интегрируем по частям и сводим интеграл к себе:





Таким образом:

Пример 10:Решение:

Проведем замену:

Пример 11:Решение:

Замена:

Пример 12:Решение:

Замена:

Пример 14:Решение:

Дважды используем рекуррентную формулу



Пример 16:Решение:

Пример 18:Решение:

Используем формулу приведения: и формулу двойного угла: .

Пример 19:Решение:

Пример 21:Решение:
–3 – 3 = –6 – целое отрицательное число

Пример 23:Решение:

Пример 24:Решение:








Дата добавления: 2014-11-29; просмотров: 3518;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.01 сек.