Производная и ее применения

Пусть функция у=f(х) определена в точках х и х1 .Разность х1 - х называется приращением аргумента, а разность f(х1) - f(х) - приращением функциипри переходе от значения аргумента х к значению аргумента х1. Приращение аргумента обозначают , приращение функции обозначают или .

Если существует предел отношения приращения функции к приращению аргумента при условии, что , то функция у=f(х) называется дифференцируемой в точке х, а этот предел называется значением производной функции у=f(х) в точке х и обозначается или .

Операцию отыскания производной называют дифференцированием.

 








Дата добавления: 2014-12-05; просмотров: 1088;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.