Тангенциальная составляющая ускорения 17 страница
(92.1)
или
(92.2)
где e — диэлектрическая проницаемость среды, окружающей проводник.
Таким образом, напряженность электростатического поля у поверхности проводника определяется поверхностной плотностью зарядов. Можно показать, что соотношение (92.2) задает напряженность электростатического поля вблизи поверхности проводника любой формы.
Если во внешнее электростатическое поле внести нейтральный проводник, то свободные заряды (электроны, ионы) будут перемещаться: положительные — по полю, отрицательные — против поля (рис. 142, а). На одном конце проводника будет скапливаться избыток положительного заряда, на другом — избыток отрицательного. Эти заряды называютсяиндуцированными. Процесс будет происходить до тех пор, пока напряженность поля внутри проводника не станет равной нулю, а линии напряженности вне проводника — перпендикулярными его поверхности (рис. 142, б). Таким образом, нейтральный проводник, внесенный в электростатическое поле, разрывает часть линий напряженности; они заканчиваются на отрицательных индуцированных зарядах и вновь начинаются на положительных. Индуцированные заряды распределяются на внешней поверхности проводника. Явление перераспределения поверхностных зарядов на проводнике во внешнем электростатическом поле называется электростатической индукцией.
Из рис. 142, б следует, что индуцированные заряды появляются на проводнике вследствие смещения их под действием поля, т. е. s является поверхностной плотностью смещенных зарядов. По (92.1), электрическое смещение D вблизи проводника численно равно поверхностной плотности смещенных зарядов. Поэтому вектор D получил название вектора электрического смещения.
Таккак в состоянии равновесия внутри проводника заряды отсутствуют, то создание внутри него полости не повлияет на конфигурацию расположения зарядов и тем самым на электростатическое поле. Следовательно, внутри полости поле будет отсутствовать. Если теперь этот проводник с полостью заземлить, то потенциал во всех точках полости будет нулевым, т. е. полость полностью изолирована от влияния внешних электростатических полей. На этом основанаэлектростатическая защита — экранирование тел, например измерительных приборов, от влияния внешних электростатических полей. Вместо сплошного проводника для защиты может быть использована густая металлическая сетка, которая, кстати, является эффективной при наличии не только постоянных, но и переменных электрических полей.
Свойство зарядов располагаться на внешней поверхности проводника используется для устройстваэлектростатических генераторов, предназначенных для накопления больших зарядов и достижения разности потенциалов в несколько миллионов вольт. Электростатический генератор, изобретенный американским физиком Р. Ван-де-Граафом (1901—1967), состоит из шарообразного полого проводника 1 (рис. 143), укрепленного на изоляторах 2. Движущаяся замкнутая лента 3 из прорезиненной ткани заряжается от источника напряжения с помощью системы остриев 4, соединенных с одним из полюсов источника, второй полюс которого заземлен. Заземленная пластина 5 усиливает стекание зарядов с остриев на ленту. Другая система остриев 6 снимает заряды с ленты и передает их полому шару, и они переходят на его внешнюю поверхность. Таким образом, сфере передается постепенно большой заряд и удается достичь разности потенциалов в несколько миллионов вольт. Электростатические генераторы применяются в высоковольтных ускорителях заряженных частиц, а также в слаботочной высоковольтной технике.
§ 93. Электрическая емкость уединенного проводника
Рассмотримуединенный проводник, т. е. проводник, который удален от других проводников, тел и зарядов. Его потенциал, согласно (84.5), прямо пропорционален заряду проводника. Из опыта следует, что разные проводники, будучи одинаково заряженными, имеют различные потенциалы. Поэтому для уединенного проводника можно записать
Величину
(93.1)
называют электроемкостью (или просто емкостью) уединенного проводника. Емкость уединенного проводника определяется зарядом, сообщение которого проводнику изменяет его потенциал на единицу.
Емкость проводника зависит от его размеров и формы, но не зависит от материала, агрегатного состояния, формы и размеров полостей внутри проводника. Это связано с тем, что избыточные заряды распределяются на внешней поверхности проводника. Емкость не зависит также ни от заряда проводника, ни от его потенциала.
Единица электроемкости — фарад (Ф): 1 Ф — емкость такого уединенного проводника, потенциал которого изменяется на 1 В при сообщении ему заряда 1 Кл.
Согласно (84.5), потенциал уединенного шара радиуса R, находящегося в однородной среде с диэлектрической проницаемостью e, равен
Используя формулу (93.1), получим, что емкость шара
(93.2)
Отсюда следует, что емкостью 1 Ф обладал бы уединенный шар, находящийся в вакууме и имеющий радиус R=C/(4pe0)»9×106км, что примерно в 1400 раз больше радиуса Земли (электроемкость Земли С»0,7 мФ). Следовательно, фарад — очень большая величина, поэтому на практике используются дольные единицы - миллифарад (мФ), микрофарад (мкФ), нанофарад (нФ), пикофарад (пФ). Из формулы (93.2) вытекает также, что единица электрической постоянной e0 — фарад на метр (Ф/м) (см. (78.3)).
§ 94. Конденсаторы
Как видно из § 93, для того чтобы проводник обладал большой емкостью, он должен иметь очень большие размеры. На практике, однако, необходимы устройства, обладающие способностью при малых размерах и небольших относительно окружающих тел потенциалах накапливать значительные по величине заряды, иными словами, обладать большой емкостью. Эти устройства получили названиеконденсаторов.
Если к заряженному проводнику приближать другие тела, то на них возникают индуцированные (на проводнике) или связанные (на диэлектрике) заряды, причем ближайшими к наводящему заряду Q будут заряды противоположного знака. Эти заряды, естественно, ослабляют поле, создаваемое зарядом Q, т. е. понижают потенциал проводника, что приводит (см. (93.1)) к повышению его электроемкости.
Конденсатор состоит из двух проводников (обкладок), разделенных диэлектриком. На емкость конденсатора не должны оказывать влияния окружающие тела, поэтому проводникам придают такую форму, чтобы поле, создаваемое накапливаемыми зарядами, было сосредоточено в узком зазоре между обкладками конденсатора. Этому условию удовлетворяют (см. § 82): 1) две плоские пластины; 2) два коаксиальных цилиндра; 3) две концентрические сферы. Поэтому в зависимости от формы обкладок конденсаторы делятся наплоские, цилиндрические и сферические.
Так как поле сосредоточено внутри конденсатора, то линии напряженности начинаются на одной обкладке и кончаются на другой, поэтому свободные заряды, возникающие на разных обкладках, являются равными по модулю разноименными зарядами. Подемкостью конденсатора понимается физическая величина, равная отношению заряда Q, накопленного в конденсаторе, к разности потенциалов (j1 —j2) между его обкладками:
(94.1)
Рассчитаем емкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью S каждая, расположенных на расстоянии d друг от друга и имеющих заряды +Q и –Q. Если расстояние между пластинами мало по сравнению с их линейными размерами, то краевыми эффектами можно пренебречь и поле между обкладками считать однородным. Его можно рассчитать используя формулы (86.1) и (94.1). При наличии диэлектрика между обкладками разность потенциалов между ними, согласно (86.1),
(94.2)
где e — диэлектрическая проницаемость. Тогда из формулы (94.1), заменяя Q=sS, с учетом (94.2) получим выражение для емкости плоского конденсатора:
(94.3)
Для определения емкости цилиндрического конденсатора, состоящего из двух полых коаксиальных цилиндров с радиусами r1 и r2 (r2 > r1), вставленных один в другой, опять пренебрегая краевыми эффектами, считаем поле радиально-симметричным и сосредоточенным между цилиндрическими обкладками. Разность потенциалов между обкладками вычислим по формуле (86.3) для поля равномерно заряженного бесконечного цилиндра с линейной плотностью t =Q/l (l—длина обкладок). При наличии диэлектрика между обкладками разность потенциалов
(94.4)
Подставив (94.4) в (94.1), получим выражение для емкости цилиндрического конденсатора:
(94.5)
Для определения емкости сферического конденсатора, состоящего из двух концентрических обкладок, разделенных сферическим слоем диэлектрика, используем формулу (86.2) для разности потенциалов между двумя точками, лежащими на расстояниях r1 и r2 (r2 > r1) от центра заряженной сферической поверхности. При наличии диэлектрика между обкладками разность потенциалов
(94.6)
Подставив (94.6) в (94.1), получим
Если d=r2—r1<<r1, то r2 » r1 » r и C=4pe0er2/d. Так как 4pr2 —площадь сферической обкладки, то получаем формулу (94.3). Таким образом, при малой величине зазора по сравнению с радиусом сферы выражения для емкости сферического а плоского конденсаторов совпадают. Этот вывод справедлив и для цилиндрического конденсатора: при малом зазоре между цилиндрами по сравнению с их радиусами в формуле (94.5) ln (r2/r1) можно разложить в ряд, ограничиваясь только членом первого порядка. В результате опять приходим к формуле (94.3).
Из формул (94.3), (94.5) и (94.7) вытекает, что емкость конденсаторов любой формы прямо пропорциональна диэлектрической проницаемости диэлектрика, заполняющего пространство между обкладками. Поэтому применение в качестве прослойки сегнетоэлектриков значительно увеличивает емкость конденсаторов.
Конденсаторы характеризуются пробивным напряжением — разностью потенциалов между обкладками конденсатора, при которой происходит пробой — электрический разряд через слой диэлектрика в конденсаторе. Пробивное напряжение зависит от формы обкладок, свойств диэлектрика и его толщины.
Для увеличения емкости и варьирования ее возможных значений конденсаторы соединяют в батареи, при этом используется их параллельное и последовательное соединения.
1. Параллельное соединение конденсаторов (рис. 144). У параллельно соединенных конденсаторов разность потенциалов на обкладках конденсаторов одинакова и равна jA – jB. Если емкости отдельных конденсаторов С1, С2, ..., Сn, то, согласно (94.1), их заряды равны
а заряд батареи конденсаторов
Полная емкость батареи
т. е. при параллельном соединении конденсаторов она равна сумме емкостей отдельных конденсаторов.
2. Последовательное соединение конденсаторов (рис. 145). У последовательно соединенных конденсаторов заряды всех обкладок равны по модулю, а разность потенциалов на зажимах батареи
где для любого из рассматриваемых конденсаторов Dji = Q/Сi. С другой стороны,
откуда
т. е. при последовательном соединении конденсаторов суммируются величины, обратные емкостям. Таким образом, при .последовательном соединении конденсаторов результирующая емкость С всегда меньше наименьшей емкости, используемой в батарее.
§ 95. Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля
1. Энергия системы неподвижных точечных зарядов. Электростатические силы взаимодействия консервативны (см. § 83); следовательно, система зарядов обладает потенциальной энергией. Найдем потенциальную энергию системы двух неподвижных точечных зарядов Q1и Q2, находящихся на расстоянии r друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией (см. (84.2) и (84.5)):
где j12 и j21 — соответственно потенциалы, создаваемые зарядом Q2 в точке нахождения заряда Q1 и зарядом Q1 в точке нахождения заряда Q2. Согласно (84.5),
поэтому W1 = W2 = W и
Добавляя к системе из двух зарядов последовательно зарядыQ3, Q4, ... , можно убедиться в том, что в случае n неподвижных зарядов энергия взаимодействия системы точечных зарядов равна
(95.1)
где ji — потенциал, создаваемый в той точке, где находится заряд Qi, всеми зарядами, кроме i-го.
2. Энергия заряженного уединенного проводника. Пусть имеется уединенный проводник, заряд, емкость и потенциал которого соответственно равны Q, С, j. Увеличим заряд этого проводника на dQ. Для этого необходимо перенести заряд dQ из бесконечности на уединенный проводник, затратив на это работу, равную
Чтобы зарядить тело от нулевого потенциала до j, необходимо совершить работу
(95.2)
Энергия заряженного проводника равна той работе, которую необходимо совершить, чтобы зарядить этот проводник:
(95.3)
Формулу (95.3) можно получить и из того, что потенциал проводника во всех его точках одинаков, так как поверхность проводника является эквипотенциальной. Полагая потенциал проводника равным j, из (95.1) найдем
где - заряд проводника.
3. Энергия заряженного конденсатора. Как всякий заряженный проводник, конденсатор обладает энергией, которая в соответствии с формулой (95.3) равна
(95.4)
где Q — заряд конденсатора, С — его емкость, Dj — разность потенциалов между обкладками конденсатора.
Используя выражение (95.4), можно найтимеханическую (пондеромоторную) силу, с которой пластины конденсатора притягивают друг друга. Для этого предположим, что расстояние х между пластинами меняется, например, на величину dx. Тогда действующая сила совершает работу dA=Fdx вследствие уменьшения потенциальной энергии системы Fdx = — dW, откуда
(95.5)
Подставив в (95.4) выражение (94.3), получим
(95.6)
Производя дифференцирование при конкретном значении энергии (см. (95.5) и (95.6)), найдем искомую силу:
где знак минус указывает, что сила F является силой притяжения.
4. Энергия электростатического поля. Преобразуем формулу (95.4), выражающую энергию плоского конденсатора посредством зарядов и потенциалов, воспользовавшись выражением для емкости плоского конденсатора (C=e0eS/d) и разности потенциалов между его обкладками (Dj=Ed. Тогда
(95.7)
где V= Sd — объем конденсатора. Формула (95.7) показывает, что энергия конденсатора выражается через величину, характеризующую электростатическое поле, — напряженность Е.
Объемная плотность энергии электростатического поля (энергия единицы объема)
(95.8)
Выражение (95.8) справедливо только дляизотропного диэлектрика, для которого выполняется соотношение (88.2):Р ={e0Е.
Формулы (95.4) и (95.7) соответственно связывают энергию конденсатора с зарядом на его обкладках и с напряженностью поля. Возникает, естественно, вопрос о локализации электростатической энергии и что является ее носителем — заряды или поле? Ответ на этот вопрос может дать только опыт. Электростатика изучает постоянные во времени поля неподвижных зарядов, т. е. в ней поля и обусловившие их заряды неотделимы друг от друга. Поэтому электростатика ответить на поставленные вопросы не может. Дальнейшее развитие теории и эксперимента показало, что переменные во времени электрические и магнитные поля могут существовать обособленно, независимо от возбудивших их зарядов, и распространяются в пространстве в виде электромагнитных волн, способных переносить энергию. Это убедительно подтверждает основное положение теории близкодействия о том, что энергия локализована в поле и что носителем энергии является поле.
Задачи
11.1. Два заряженных шарика, подвешенных на нитях одинаковой длины, опускаются в керосин плотностью 0,8 г/см3. Какова должна быть плотность материала шариков, чтобы угол расхождения нитей в воздухе и керосине был один и тот же? Диэлектрическая проницаемость керосина e=2. [1,6 г/см3]
11.2. На некотором расстоянии от бесконечной равномерно заряженной плоскости с поверхностной плотностью s =1,5 нКл/см2 расположена круглая пластинка. Плоскость пластинки составляет с линиями напряженности угол a=45°. Определить поток вектора напряженности через эту пластинку, если ее радиус r=10 см. [1,88 кВ×м]
11.3. Кольцо радиусом r=10 см из тонкой проволоки равномерно заряжено с линейной плотностью t =10 нКл/м. Определить напряженность поля на оси, проходящей через центр кольца в точке А. удаленной на расстояние а =20 см от центра кольца. [1 кВ/м]
11.4. Шар радиусом R=10 см заряжен равномерно с объемной плотностью r =5 нКл/м3. Определить напряженность электростатического поля: 1) на расстоянии r1=2 см от центра шара; 2) на расстоянии r2=12 см от центра шара. Построить зависимость Е(r). [1) 3,77 В/м; 2) 13,1 В/м]
11.5. Электростатическое поле создается положительно заряженной бесконечной нитью с постоянной линейной плотностью t = 1 нКл/см. Какую скорость приобретет электрон, приблизившись под действием поля к нити вдоль линии напряженности с расстояния r1=2,5 см до r2=1,5 см? [18 Мм/с]
11.6. Электростатическое поле создается сферой радиусом R=4 см, равномерно заряженной с поверхностной плотностью s =1 нКл/м2. Определить разность потенциалов между двумя точками поля, лежащими на расстояниях r1=6 см и r2=10 см. [1,2 В]
11.7. Определить линейную плотность бесконечно длинной заряженной нити, если работа сил поля по перемещению заряда Q =1 нКл с расстояния r1 =10 см до r2 = 5 см в направлении, перпендикулярном нити, равна 0,1 мДж. [8 мкКл/м]
11.8. Пространство между обкладками плоского конденсатора заполнено парафином (e = 2). Расстояние между пластинами d=8,85 мм. Какую разность потенциалов необходимо подать на пластины, чтобы поверхностная плотность связанных зарядов на парафине составляла 0,05 нКл/см2? [500 В]
11.9. Свободные заряды равномерно распределены с объемной плотностью r =10 нКл/м3 по шару радиусом R = 5 см из однородного изотропного диэлектрика с диэлектрической проницаемостью e=6. Определить напряженности электростатического поля на расстояниях r1 = 2 см и r2 = 10 см от центра шара. [E1=1,25 В/м; E2=23,5 В/м]
11.10. Пространство между пластинами плоского конденсатора заполнено стеклом (e = 7). Расстояние между пластинами d=5 мм, разность потенциалов U=500 В. Определить энергию поляризованной стеклянной пластины, если ее площадь S = 50 см2. [6,64 мкДж]
11.11. Плоский воздушный конденсатор емкостью С=10 пФ заряжен до разности потенциалов U=1 кВ. После отключения конденсатора от источника напряжения расстояние между пластинами конденсатора было увеличено в два раза. Определить: 1) разность потенциалов на обкладках конденсатора после их раздвижения; 2) работу внешних сил по раздвижению пластин. [1) 2 кВ; 2) 5 мкДж]
11.12. Разность потенциалов между пластинами конденсатора U=200 В. Площадь каждой пластины S=100 см2, расстояние между пластинами d=1 мм, пространство между ними заполнено парафином (e = 2). Определить силу притяжения пластин друг к другу. [3,54 мН]
Глава 12Постоянный электрический ток
§ 96. Электрический ток, сила и плотность тока
В электродинамике — разделе учения об электричестве, в котором рассматриваются явления и процессы, обусловленные движением электрических зарядов или макроскопических заряженных тел, — важнейшим понятием является понятие электрического тока. Электрическим током называется любое упорядоченное (направленное) движение электрических зарядов. В проводнике под действием приложенного электрического поля Е свободные электрические заряды перемещаются: положительные — по полю, отрицательные — против поля (рис. 146, а), т. е. в проводнике возникает электрический ток, называемый током проводимости. Если же упорядоченное движение электрических зарядов осуществляется перемещением в пространстве заряженного макроскопического тела (рис. 146, б), то возникает так называемый конвекционный ток.
Для возникновения и существования электрического тока необходимо, с одной стороны, наличие свободных носителей тока — заряженных частиц, способных перемещаться упорядоченно, а с другой — наличие электрического поля, энергия которого, каким-то образом восполняясь, расходовалась бы на их упорядоченное движение. За направление тока условно принимают направление движения положительных зарядов.
Количественной мерой электрического тока служит сила тока I скалярная физическая величина, определяемая электрическим зарядом, проходящим через поперечное сечение проводника в единицу времени:
Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным. Для постоянного тока
где Q — электрический заряд, проходящий за время t через поперечное сечение проводника. Единила силы тока — ампер (А).
Физическая величина, определяемая силой тока, проходящего через единицу площади поперечного сечения проводника, перпендикулярного направлению тока, называется плотностью тока:
Выразим силу и плотность тока через скорость ávñ упорядоченного движения зарядов в проводнике. Если концентрация носителей тока равна n и каждый носитель имеет элементарный заряд е (что не обязательно для ионов), то за время dt через поперечное сечение S проводника переносится заряд dQ=ne ávñ S dt. Сила тока
а плотность тока
(96.1)
Плотность тока — вектор, ориентированный по направлению тока, т. е. направление вектора j совпадает с направлением упорядоченного движения положительных зарядов. Единица плотности тока — ампер на метр в квадрате (А/м2).
Сила тока сквозь произвольную поверхность S определяется как поток вектора j, т. е.
(96.2)
где dS=ndS (n — единичный вектор нормали к площадке dS, составляющей с вектором j угол a).
§ 97. Сторонние силы. Электродвижущая сила и напряжение
Если в цепи на носители тока действуют только силы электростатического поля, то происходит перемещение носителей (они предполагаются положительными) от точек с большим потенциалом к точкам с меньшим потенциалом. Это приведет к выравниванию потенциалов во всех точках цепи и к исчезновению электрического поля. Поэтому для существования постоянного тока необходимо наличие в цепи устройства, способного создавать и поддерживать разность потенциалов за счет работы сил неэлектростатического происхождения. Такие устройства называютсяисточниками тока. Силы неэлектростатического происхождения, действующие на заряды со стороны источников тока, называютсясторонними.
Природа сторонних сил может быть различной. Например, в гальванических элементах они возникают за счет энергии химических реакций между электродами и электролитами; в генераторе — за счет механической энергии вращения ротора генератора и т. п. Роль источника тока в электрической цепи, образно говоря, такая же, как роль насоса, который необходим для перекачивания жидкости в гидравлической системе. Под действием создаваемого поля сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему на концах цепи поддерживается разность потенциалов и в цепи течет постоянный электрический ток.
Сторонние силы совершают работу по перемещению электрических зарядов. Физическая величина, определяемая работой, совершаемой сторонними силами при перемещении единичного положительного заряда, называетсяэлектродвижущей силой (э.д.с.),действующей в цепи:
(97.1)
Эта работа производятся за счет энергии, затрачиваемой в источнике тока, поэтому величину можно также называть электродвижущей силой источника тока, включенного в цепь. Часто, вместо того чтобы сказать: «в цепи действуют сторонние силы», говорят: «в цепи действует э.д.с.», т. е. термин «электродвижущая сила» употребляется как характеристика сторонних сил. Э.д.с., как и потенциал, выражается в вольтах (ср. (84.9) и (97.1)).
Дата добавления: 2015-01-02; просмотров: 931;