Тангенциальная составляющая ускорения 15 страница

Графически электростатическое поле изображают с помощьюлиний напряженности — линий, касательные к которым в каждой точке совпадают с направлением вектора Е (рис. 119). Линиям напряженности приписывается направление, совпадающее с направлением вектора напряженности. Так как в каждой данной точке пространства вектор напряженности имеет лишь одно направление, то линии напряженности никогда не пересекаются. Дляоднородного поля (когда вектор напряженности в любой точке постоянен по величине и направлению) линии напряженности параллельны вектору напряженности. Если поле создается точечным зарядом, то линии напряженности — радиальные прямые, выходящие из заряда, если он положителен (рис. 120, а), и входя­щие в него, если заряд отрицателен (рис. 120, б). Вследствие большой наглядности графический способ представления электростатического поля широко применяется в электротехнике.

Чтобы с помощью линий напряженности можно было характеризовать не только направление, но и значение напряженности электростатического поля, условились про­водить их с определенной густотой (см. рис. 119): число линий напряженности, прони­зывающих единицу площади поверхности, перпендикулярную линиям напряженности, должно быть равно модулю вектора Е. Тогда число линий напряженности, пронизыва­ющих элементарную площадку dS, нормаль n которой образует угол a с вектором Е, равно Е dS cosa = EndS, где Еп—проекция вектора Е на нормаль n к площадке dS (рис. 121). Величина

называетсяпотоком вектора напряженности через площадку dS. Здесь dS = dSn — век­тор, модуль которого равен dS, а направление совпадает с направлением нормали n к площадке. Выбор направления вектора n (а следовательно, и dS) условен, так как его можно направить в любую сторону. Единица потока вектора напряженности электростатического поля — 1 В×м.

Для произвольной замкнутой поверхности S поток вектора Е сквозь эту поверх­ность

(79.3)

где интеграл берется по замкнутой поверхности S. Поток вектора Е является алгебра­ической величиной: зависит не только от конфигурации поля Е, но и от выбора направления n. Для замкнутых поверхностей за положительное направление нормали принимается внешняя нормаль, т. е. нормаль, направленная наружу области, охватыва­емой поверхностью.

 

В истории развития физики имела место борьба двух теорий: дальнодействия и близкодействия. В теориидальнодействия принимается, что электрические явления определяются мгновенным взаимодействием зарядов на любых расстояниях. Согласно теорииблизкодействия, все электрические явления определяются изменениями полей зарядов, причем эти изменения распространяются в пространстве от точки к точке с конечной скоростью. Применительно к электростатическим полям обе теории дают одинаковые результаты, хорошо согласующиеся с опытом. Переход же к явлениям, обусловленным движением электрических зарядов, приводит к несостоятельности те­ории дальнодействия, поэтому современной теорией взаимодействия заряженных ча­стиц является теория близкодействия.

§ 80. Принцип суперпозиции электростатических полей. Поле диполя

Рассмотрим метод определения модуля и направления вектора напряженности Е в каж­дой точке электростатического поля, создаваемого системой неподвижных зарядов Q1, Q2, ..., Qn.

Опыт показывает, что к кулоновским силам применим рассмотренный в механике принцип независимости действия сил (см. § 6), т. е. результирующая сила F, дейст­вующая со стороны поля на пробный заряд Q0, равна векторной сумме сил Fi, приложенных к нему со стороны каждого из зарядов Qi:

(80.1)

Согласно (79.1), F= Q0E и Fi = Q0Еi, где Е—напряженность результирующего поля, а Еi — напряженность поля, создаваемого зарядом Qi. Подставляя последние выраже­ния в (80.1), получаем

(80.2)

Формула (80.2) выражаетпринцип суперпозиции (наложения) электростатических полей, согласно которому напряженность Е результирующего поля, создаваемого системой зарядов, равна геометрической сумме напряженностей полей, создаваемых в данной точке каждым из зарядов в отдельности.

Принцип суперпозиции позволяет рассчитать электростатические поля любой си­стемы неподвижных зарядов, поскольку если заряды не точечные, то их можно всегда свести к совокупности точечных зарядов.

Принцип суперпозиции применим для расчета электростатического поля элект­рического диполя.Электрический диполь — система двух равных по модулю разноименных точечных зарядов (+Q,–Q), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля. Вектор, направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положи­тельному и равный расстоянию между ними, называетсяплечом диполя 1. Вектор

(80.3)

совпадающий по направлению с плечом диполя и равный произведению заряда |Q| на плечо l, называетсяэлектрическим моментом диполяилидипольным моментом(рис. 122).

Согласно принципу суперпозиции (80.2), напряженность Е поля диполя в произ­вольной точке

где Е+ и Е — напряженности полей, создаваемых соответственно положительным и отрицательным зарядами. Воспользовавшись этой формулой, рассчитаем напряжен­ность поля в произвольной точке на продолжении оси диполя и на перпендикуляре к середине его оси.

1. Напряженность поля на продолжении оси диполя в точке А (рис. 123). Как видно из рисунка, напряженность поля диполя в точке А направлена по оси диполя и по модулю равна

Обозначив расстояние от точки А до середины оси диполя через r, на основании формулы (79.2) для вакуума можно записать

Согласно определению диполя, l/2<<r, поэтому

2. Напряженность поля на перпендикуляре, восставленном к оси из его середины,в точке В (рис. 123). Точка В равноудалена от зарядов, поэтому

(80.4)

где r' — расстояние от точки В до середины плеча диполя. Из подобия равнобедренных треугольников, опирающихся на плечо диполя и вектор ЕB, получим

откуда

(80.5)

Подставив в выражение (80.5) значение (80.4), получим

Вектор ЕB имеет направление, противоположное вектору электрического момента диполя (вектор р направлен от отрицательного заряда к положительному).

§ 81. Теорема Гаусса для электростатического поля в вакууме

Вычисление напряженности поля системы электрических зарядов с помощью принципа суперпозиции электростатических полей можно значительно упростить, используя выведенную немецким ученым К. Гауссом (1777—1855) теорему, определяющую поток вектора напряженности электрического поля сквозь произвольную замкнутую поверх­ность.

В соответствии с формулой (79.3) поток вектора напряженности сквозь сферичес­кую поверхность радиуса r, охватывающую точечный заряд Q, находящийся в ее центре (рис. 124), равен

Этот результат справедлив для замкнутой поверхности любой формы. Действительно, если окружить сферу (рис. 124) произвольной замкнутой поверхностью, то каждая линия напряженности, пронизывающая сферу, пройдет и сквозь эту поверхность.

Если замкнутая поверхность произвольной формы охватывает заряд (рис. 125), то при пересечении любой выбранной линии напряженности с поверхностью она то входит в нее, то выходит из нее. Нечетное число пересечений при вычислении потока в конечном счете сводится к одному пересечению, таккак поток считается положитель­ным, если линии напряженности выходят из поверхности, и отрицательным для линий, входящих в поверхность. Если замкнутая поверхность не охватывает заряда, то поток сквозь нее равен нулю, так как число линий напряженности, входящих в поверхность, равно числу линий напряженности, выходящих из нее.

Таким образом, для поверхности любой формы, если она замкнута и заключает в себя точечный заряд Q, поток вектора Е будет равен Q/e0, т. е.

(81.1)

Знак потока совпадает со знаком заряда Q.

Рассмотрим общий случай произвольной поверхности, окружающей n зарядов. В соответствии с принципом суперпозиции (80.2) напряженность Е поля, создаваемого всеми зарядами, равна сумме напряженностей Ei полей, создаваемых каждым зарядом в отдельности: Поэтому

Согласно (81.1), каждый из интегралов, стоящий под знаком суммы, равен Qi /e0. Следовательно,

(81.2)

Формула (81.2) выражаеттеорему Гаусса для электростатического поля в вакууме:поток вектора напряженности электростатического поля в вакууме сквозь произ­вольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на e0. Эта теорема выведена математически для векторного поля любой природы русским математиком М. В. Остроградским (1801—1862), а затем независимо от него применительно к электростатическому полю — К. Гауссом.

В общем случае электрические заряды могут быть «размазаны» с некоторой объемной плотностью r=dQ/dV, различной в разных местах пространства. Тогда суммарный заряд, заключенный внутри замкнутой поверхности S, охватывающей некоторый объем V,

(81.3)

Используя формулу (81.3), теорему Гаусса (81.2) можно записать так:

§ 82. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме

1. Поле равномерно заряженной бесконечной плоскости. Бесконечная плоскость (рис. 126) заряжена с постояннойповерхностной плотностью+s(s=dQ/dS — заряд, приходящийся на единицу поверхности). Линии напряженности перпендикулярны рассматриваемой плоскости и направлены от нее в обе стороны. В качестве замкнутой поверхности мысленно построим цилиндр, основания которого параллельны заряженной плоскости, а ось перпендикулярна ей. Так как образующие цилиндра параллельны линиям напряженности (соsa=0), то поток вектора напряженности сквозь боковую поверхность цилиндра равен нулю, а полный поток сквозь цилиндр равенсумме потоков сквозь его основания (площади оснований равны и для основания Еn совпадает с Е), т. е. равен 2ES. Заряд, заключенный внутри построенной цилиндрической поверхности, равен sS. Согласно теореме Гаусса (81.2), 2ES=sS/e0, откуда

(82.1)

Из формулы (82.1) вытекает, что Е не зависит от длины цилиндра, т. е. напряженность поля на любых расстояниях одинакова по модулю, иными словами, поле равномерно заряженной плоскости однородно.

2. Поле двух бесконечных параллельных разноименно заряженных плоскостей (рис. 127). Пусть плоскости заряжены равномерно разноименными зарядами с поверхностными плотностями + sи –s. Поле таких плоскостей найдемкак суперпозицию полей, создаваемых каждой из плоскостей в отдельности. На рисунке верхние стрелки соответствуют полю от положительно заряженной плоскости, нижние — от отрицательной плоскости. Слева и справа от плоскостей поля вычитаются (линии напряженности направлены навстречу друг другу), поэтому здесь напряженность поля E=0. В области между плоскостями E = E+ + E (E+ и E определяются по формуле (82.1)), поэтому результирующая напряженность

(82.2)

Таким образом, результирующая напряженность поля в области между плоскостями описывается формулой (82.2), а вне объема, ограниченного плоскостями, равна нулю.

3. Поле равномерно заряженной сферической поверхности. Сферическая поверхность радиуса R с общим зарядом Q заряжена равномерно с поверхностной плотностью +s. Благодаря равномер­ному распределению заряда по поверхности поле, создаваемое им, обладает сферической симметри­ей. Поэтому линии напряженности направлены радиально (рис. 128). Построим мысленно сферу радиуса r, имеющую общий центр с заряженной сферой. Если r>R,ro внутрь поверхности попадает весь заряд Q, создающий рассматриваемое поле, и, по теореме Гаусса (81.2), , откуда

(82.3)

При r>R поле убывает с расстоянием r по такому же закону,как у точечного заряда. График зависимости Е от r приведен на рис. 129. Если r'<R, то замкнутая поверхность не содержит внутри зарядов, поэтому внутри равномерно заряженной сферической поверхности электростатическое поле отсутствует (E=0).

4. Поле объемно заряженного шара.Шар радиуса R с общим зарядом Q заряжен равномерно собъемной плотностью r(r = –заряд, приходящийся на единицу объема). Учитывая соображения

симметрии (см. п. 3), можно показать, что для напряженности поля вне шара получится тот же результат, что и в предыдущем случае (см. (82.3)). Внутри же шара напряженность поля будет другая. Сфера радиуса r'<R охватывает заряд Q'=4/3 . Поэтому, согласно теореме Гаусса (81.2), . Учитывая, что , получаем

(82.4)

Таким образом, напряженность поля вне равномерно заряженного шара описывается формулой (82.3), а внутри его изменяется линейно с расстоянием r' согласно выражению (82.4). График зависимости Е от r для рассмотренного случая приведен на рис. 130.

5. Поле равномерно заряженного бесконечного цилиндра (нити). Бесконечный цилиндр радиуса R (рис. 131) заряжен равномерно слинейной плотностью t (t = – заряд, приходящийся на единицу длины). Из соображений симметрии следует, что линии напряженности будут направлены по радиусам круговых сечений цилиндра с одинаковой густотой во все стороны относительно оси цилиндра. В качестве замкнутой поверхности мысленно построим коаксиальный с заряженным цилиндр радиуса r и высотой l. Поток вектора Е сквозь торцы коаксиального цилиндра равен нулю (торцы параллельны линиям напряженности), а сквозь боковую поверхность равен 2prlЕ. По теореме Гаусса (81.2), при r>R 2prlЕ = tl/e0, откуда

(82.5)

Если r<R, то замкнутая поверхность зарядов внутри не содержит, поэтому в этой области E=0. Таким образом, напряженность поля вне равномерно заряженного бесконечного цилиндра определя­ется выражением (82.5), внутри же его поле отсутствует.

§ 83. Циркуляция вектора напряженности электростатического поля

Если в электростатическом поле точечного заряда Q из точки 1 в точку 2 вдоль произвольной траектории (рис. 132) перемещается другой точечный заряд Q0, то сила, приложенная к заряду, совершает работу. Работа силы F на элементарном перемеще­нии dl равна

Так как d/cosa=dr, то

Работа при перемещении заряда Q0 из точки 1 в точку 2

(83.1)

не зависит от траектории перемещения, а определяется только положениями начальной 1 и конечной 2 точек. Следовательно, электростатическое поле точечного заряда является потенциальным, а электростатические силы — консервативными (см. § 12).

Из формулы (83.1) следует, что работа, совершаемая при перемещении электричес­кого заряда во внешнем электростатическом поле по любому замкнутому пути L, равна нулю, т.е.

(83.2)

Если в качестве заряда, переносимого в электростатическом поле, взять единичный точечный положительный заряд, то элементарная работа сил поля на пути dl равна Е dl = El dl, где El = Ecosa — проекция вектора Е на направление элементарного переме­щения. Тогда формулу (83.2) можно записать в виде

(83.3)

Интеграл называетсяциркуляцией вектора напряженности. Следователь­но, циркуляция вектора напряженности электростатического поля вдоль любого за­мкнутого контура равна нулю. Силовое поле, обладающее свойством (83.3), называет­ся потенциальным. Из обращения в нуль циркуляции вектора Е следует, что линии напряженности электростатического поля не могут быть замкнутыми, они начинаются и кончаются на зарядах (соответственно на положительных или отрицательных) или же уходят в бесконечность.

Формула (83.3) справедлива только для электростатического поля. В дальнейшем будет показано, что для поля движущихся зарядов условие (83.3) не выполняется (для него циркуляция вектора напряженности отлична от нуля).

§ 84. Потенциал электростатического поля

Тело, находящееся в потенциальном поле сил (а электростатическое поле является потенциальным), обладает потенциальной энергией, за счет которой силами поля совершается работа (см. § 12). Как известно (см. (12.2)), работа консервативных сил совершается за счет убыли потенциальной энергии. Поэтому работу (83.1) сил электро­статического поля можно представить как разность потенциальных энергий, которыми обладает точечный заряд Q0 в начальной и конечной точках поля заряда Q:

(84.1)

откуда следует, что потенциальная энергия заряда qq в поле заряда Q равна

Она, как и в механике, определяется неоднозначно, а с точностью до произвольной постоянной С. Если считать, что при удалении заряда в бесконечность (r®¥) потенци­альная энергия обращается в нуль (U=0), то С=0 и потенциальная энергия заряда Q0, находящегося в поле заряда Q на расстоянии г от него, равна

(84.2)

Для одноименных зарядов Q0Q>0 и потенциальная энергия их взаимодействия (оттал­кивания) положительна, для разноименных зарядов Q0Q<0 и потенциальная энергия их взаимодействия (притяжения) отрицательна.

Если поле создается системой n точечных зарядов Q1, Q2, ..., Qn, то работа электростатических сил, совершаемая над зарядом Q0, равна алгебраической сумме работ сил, обусловленных каждым из зарядов в отдельности. Поэтому потенциальная энергия U заряда Q0, находящегося в этом поле, равна сумме потенциальных энергий Ui, каждого из зарядов:

(84.3)

Из формул (84.2) и (84.3) вытекает, что отношение U/Q0 не зависит от Q0 и является поэтому энергетической характеристикой электростатического поля, называемой по­тенциалом:

(84.4)

Потенциал j в какой-либо точке электростатического поля есть физическая величина, определяемая потенциальной энергией единичного положительного заряда, помещен­ного в эту точку.

Из формул (84.4) и (84.2) следует, что потенциал поля, создаваемого точечным зарядом Q, равен

(84.5)

Работа, совершаемая селами электростатического поля при перемещении заряда Q0 из точки 1 в точку 2 (см. (84.1), (84.4), (84.5)), может быть представлена как

(84.6)

т. е. равна произведению перемещаемого заряда на разность потенциалов в начальной и конечной точках.Разность потенциалов двух точек 1 и 2 в электростатическом поле определяется работой, совершаемой силами поля, при перемещении единичного поло­жительного заряда из точки 1 в точку 2.

Работа сил поля при перемещении заряда Q0 из точки 1 в точку 2 может быть записана также в виде

(84.7)

Приравняв (84.6) и (84.7), придем к выражению для разности потенциалов:

(84.8)

где интегрирование можно производить вдоль любой линии, соединяющей начальную и конечную точки, так как работа сил электростатического поля не зависит от траек­тории перемещения.

Если перемещать заряд Q0 из произвольной точки за пределы поля, т. е. в бесконеч­ность, где, по условию, потенциал равен нулю, то работа сил электростатического поля, согласно (84.6), A¥=Q0j, откуда

(84.9)

Таким образом, потенциал — физическая величина, определяемая работой по переме­щению единичного положительного заряда при удалении его из данной точки поля в бесконечность. Эта работа численно равна работе, совершаемой внешними силами (против сил электростатического поля) по перемещению единичного положительного заряда из бесконечности в данную точку поля.

Из выражения (84.4) следует, что единица потенциала —вольт (В): 1 В есть потен­циал такой точки поля, в которой заряд в 1 Кл обладает потенциальной энергией 1 Дж (1 В = 1 Дж/Кл). Учитывая размерность вольта, можно показать, что введенная в § 79 единица напряженности электростатического поля действительно равна 1 В/м: 1 Н/Кл=1 Н×м/(Кл×м)=1 Дж/(Кл×м)=1 В/м.

Из формул (84.3) и (84.4) вытекает, что если поле создается несколькими зарядами, то потенциал поля системы зарядов равен алгебраической сумме потенциалов полей всех этих зарядов:

§ 85. Напряженность как градиент потенциала. Эквипотенциальные поверхности

Найдем взаимосвязь между напряженностью электростатического поля, являющейся его силовой характеристикой, и потенциалом — энергетической характеристикой поля.

Работа по перемещению единичного точечного положительного заряда из одной точки поля в другую вдоль оси х при условии, что точки расположены бесконечно близко друг к другу и x2—x1=dx, равна Exdx. Та же работа равна j1—j2=dj. Приравняв оба выражения, можем записать

(85.1)

где символ частной производной подчеркивает, что дифференцирование производится только по х. Повторив аналогичные рассуждения для осей у и z, можем найти вектор Е:

гдеi, j, k — единичные векторы координатных осей х, у, z.

Из определения градиента (12.4) и (12.6) следует, что

(85.2)

т. е. напряженность Е поля равна градиенту потенциала со знаком минус. Знак минус определяется тем, что вектор напряженности Е поля направлен в сторону убывания потенциала.

Для графического изображения распределения потенциала электростатического поля,как и в случае поля тяготения (см. § 25), пользуютсяэквипотенциальными поверхностями — поверхностями, во всех точках которых потенциал j имеет одно и то же значение.

Если поле создается точечным зарядом, то его потенциал, согласно (84.5), Таким образом, эквипотенциальные поверхности в данном случае — кон­центрические сферы. С другой стороны, линии напряженности в случае точечного заряда — радиальные прямые. Следовательно, линии напряженности в случае точеч­ного заряда перпендикулярны эквипотенциальным поверхностям.

Линии напряженности всегда нормальны к эквипотенциальным поверхностям. Дей­ствительно, все точки эквипотенциальной поверхности имеют одинаковый потенциал, поэтому работа по перемещению заряда вдоль этой поверхности равна нулю, т. е. электростатические силы, действующие на заряд, всегда направлены по нормалям к эквипотенциальным поверхностям. Следовательно, вектор Е всегда нормален к эк­випотенциальным поверхностям, а поэтому линии вектора Е ортогональны этим повер­хностям.








Дата добавления: 2015-01-02; просмотров: 997;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.045 сек.