Основные определения и способы задания ПФ
Вектор входных переменных переключательной функции
называется набором. Любой набор значений аргументов ПФ будем рассматривать как целое двоичное число, определяющее его номер при перечислении:
– «ноль» (нулевой набор),
– «один» (первый набор),
– «два» (второй набор), и т.д.
Поскольку общее число наборов равно
и на каждом из них ПФ может принимать одно из двух значений: 0 или 1, максимальное число различных переключательных функций, зависящих от n переменных, равно
.
Любая ПФ, зависящая от n аргументов, может быть определена на
наборах. Если для некоторой функции
, то такая функция называется полностью определенной. В противном случае функция называется не полностью определенной.
Пусть s – число наборов, на которых значение функции не определено. Не полностью определенную функцию можно доопределить значениями 0 или 1 на всех s наборах, при этом выбор совокупности значений функции может определяться произвольно или исходя из каких-либо рациональных соображений. Таким образом, при произвольном доопределении не полностью определенной функции можно получить
различных полностью определенных функций.
Переключательную функцию можно задать одним из трех способов: аналитическим, геометрическим или матричным [4]. Простейшей разновидностью матричного способа задания является составление таблицы истинности ПФ. Таблица истинности булевой функции представляет собой совокупность наборов входных аргументов и соответствующие этим наборам выходные значения задаваемой функции (табл. 3.1).
Таблица 3.1
| № набора | ||||||||||||||||
| x1 | ||||||||||||||||
| x2 | ||||||||||||||||
| x3 | ||||||||||||||||
| x4 | ||||||||||||||||
| f1(x1, x2, x3, x4) | ||||||||||||||||
| f2(x1, x2, x3, x4) | ||||||||||||||||
| f3(x1, x2, x3, x4) |
Задание ПФ при помощи таблицы истинности не всегда удобно, так как размеры таблицы растут пропорционально
, где n – количество входных переменных.
При аналитическом способе задания ПФ определяемая функция описывается выражениями с использованием последовательностей входных переменных и операций алгебры логики (более подробно этот способ задания ПФ рассматривается в разделе 3.5).
Рассмотрим геометрический способ задания ПФ. Каждый двоичный набор n переменных
в геометрическом смысле можно интерпретировать как вектор единичной длины, определяющий точку
n-мерного пространства. Таким образом, множество
наборов определяет множество вершин n-мерного гиперкуба. Для
на рис. 3.1 представлен трехмерный куб, где каждой вершине соответствует один из возможных наборов входных переменных. Для задания ПФ графическим
способом необходимо определить ее значения в вершинах n-мерного гиперкуба.

Переключательная функция называется существенно зависящей от переменной
, если хотя бы для одного набора переменных
выполняется следующее соотношение:
.
Если такое соотношение не выполняется, то функция
не зависит от переменной
. В этом случае переменная
называется фиктивной. Фиктивные переменные можно исключить, так как от этого значения функции не изменяются.
Один из способов определения фиктивных переменных заключается в следующем. Разобьем множество наборов входных переменных на два подмножества. В первое подмножество входят наборы, на которых функция принимает значение 1, а во второе подмножество входят наборы, на которых функция принимает значение 0. Для проверки фиктивности переменной
необходимо вычеркнуть соответствующие ей столбцы из обоих подмножеств. Отсутствие в подмножествах одинаковых наборов указывает на фиктивность аргумента
.
В качестве примера рассмотрим функцию f3, заданную табл. 3.1. Разобьем множество ее аргументов на два подмножества (табл. 3.2, 3.3). Вычеркнем в этих таблицах столбцы, соответствующие переменной x4. Поскольку в таблицах отсутствуют одинаковые наборы, можно сделать вывод, что переменная x4 является фиктивной.
Таблица 3.2 Таблица 3.3
| x1 | x2 | x3 | x4 | x1 | x2 | x3 | x4 | |
f3(x1, x2, x3, x4) = 1 f3(x1, x2, x3, x4) = 0
Дата добавления: 2014-12-27; просмотров: 1221;
