Кругового конуса
На рис. 6.17 построена линия пересечения конической поверхности вращения плоскостью b.
Рис. 6.17
Точки 1¢¢ и 2¢¢ на очерковых образующих фронтальной проекции конуса определены с помощью фронтальной плоскости w1, пересекающей плоскость b по фронтали f. Верхняя и нижняя точки сечения определены с помощью плоскости w2, перпендикулярной к горизонталям плоскости b. Плоскость w2 пересекает коническую поверхность по образующим k и l, а плоскость b - по линии HF. Точки пересечения линии HF с образующими k и l являются высшей 3 и низшей 4точками искомой кривой.
Через середину отрезка 3-4, точку С, проведем плоскость s.
Плоскость s пересекает коническую поверхность по окружности m1, а плоскость b – по горизонтали h. Точки их пересечения – точки 5, 6.
Для горизонтальной проекции линии пересечения пара диаметров 3-4 и 5-6 будет взаимно перпендикулярной, т.е. парой осей эллипса (3-4 – большая ось, 5-6 – малая ось).
Наличие на чертеже пары осей эллипса позволяет определить некоторые дополнительные точки без введения новых вспомогательных плоскостей. Через точку 2¢ проведена горизонтальная хорда эллипса. Она делится диаметром 3-4 пополам. Определяем точку 7 и аналогично точку 8.
Дополнительные (промежуточные) точки эллипса могут быть найдены так же, как точки 5 и 6 с помощью плоскостей s2, s3 и т.д.
В ряде случаев бывает целесообразно для построения линии пересечения кривой поверхности с плоскостью или для определения некоторых характерных точек этой линии прибегать к преобразованию чертежа, при котором заданная плоскость общего положения становилась бы проецирующей.
На рис. 6.18 к данным плоскостям проекций добавлена плоскость p3, перпендикулярная к плоскости b. На нее плоскость b проецируется в виде прямой линии b¢¢¢, основание конуса – в виде отрезка, лежащего на новой оси проекции, а вершина конуса – точкой V¢¢¢. Третья проекция позволяет заключить, что сечение будет представлять собой эллипс, так как из чертежа очевидно, что все образующие конуса пересекаются плоскостью b, а также определить высшую 3 и низшую 4 точки кривой линии. Эта проекция позволяет, не пользуясь вспомогательными плоскостями, найти точки эллипса на любых образующих конуса. На рис. 6.18 показано построение точек 5 и 6.
Рис. 6.18
Дата добавления: 2014-12-18; просмотров: 617;