Сущность и последствия гетероскедастичности

 

Равенство дисперсий возмущений ei регрессии - гомоскедастичность - является обязательным условием линейной классической модели. Формально оно записывается в виде: åe=s2En.

Однако на практике это условие часто нарушается, и мы имеем дело с гетероскедастичностью. В парной регрессии это может проявляться так: с ростом объясняющей переменной Х растет в среднем значение результирующей переменной Y и одновременно увеличивается разброс точек относительно тренда (рис. 6.1 и 6.2).

 

                 
y         y        
                   
                   
                   
                   
                   
                   
                   
                   
        x         x

 

Рис. 6.1. Явление гомоскедастичности Рис. 6.2. Явление гетероскедастичности

Рассмотрим последствия гетероскедастичности. Пусть для оценки регрессии Y по Х1, ... , Хp мы применили обычный МНК и получили оценочный вектор b для вектора параметров b: b=(X’X)-1X’Y. Если вместо Y подставить его модель Y=Xb+e, то после несложных преобразований получим (заметим, что вектор b зависит от случайного вектора e):

 

b=(X’X)-1X’Y=b+(X’X)-1X’e. (6.11)

 

Эта оценка - несмещенная и состоятельная для обобщенной линейной модели множественной регрессии, в том числе для случая гетероскедастичности (это очевидно, если учесть М(e)=0). Следовательно, для построения регрессионной модели и использования ее в качестве прогностического инструмента обычный метод наименьших квадратов применим и в случае гетероскедастичности модели.

Неприятности начинаются, когда мы хотим оценить точность модели, ее значимость, получить интервальные оценки ее коэффициентов. Результаты оказались бы непригодными.

Дело в том, что при расчете t- и F-статистик для тестирования гипотез важное значение имеют оценки дисперсий и ковариаций оценок bi, т.е. ковариационная матрица åb. Если модель не является классической, то ковариационная матрица вектора возмущений åe¹s2En, и вместо åb=s2(X’X)-1 мы имеем существенно иную ковариационную матрицу:

 

åb = (X’X)-1X’WX(X’X)-1.

 

Добавим также, что несмещенная и состоятельная оценка в случае гетероскедастичности не будет оптимальной в смысле теоремы Гаусса-Маркова, т.е. эффективной. Это может привести к тому, что оценка b будет значительно отличаться от истинного значения b.

 


<== предыдущая лекция | следующая лекция ==>
Обобщенный метод наименьших квадратов | Тесты на гетероскедастичность




Дата добавления: 2019-10-16; просмотров: 116; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию, введите в поисковое поле ключевые слова и изучайте нужную вам информацию.

Поделитесь с друзьями:

Если вам понравился данный ресурс вы можете рассказать о нем друзьям. Сделать это можно через соц. кнопки выше.
helpiks.org - Хелпикс.Орг - 2014-2020 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.