Метод Гаусса (метод исключения неизвестных)

Наиболее распространенным и универсальным методом решения систем линейных уравнений является метод Гаусса, в основе которого лежит идея последовательного исключения неизвестных. Существуют различные вычислительные схемы, реализующие этот метод. Рассмотрим одну из них – схему единственного деления. Для простоты ограничимся рассмотрением системы трех уравнений с тремя неизвестными:

(4.4)

Пусть . Разделив первое уравнение системы (4.4 ) на , получим:

, (4.5)

где , .

Пользуясь уравнением (4.5), можно исключить неизвестное из второго и третьего уравнений системы (4.4). Для этого следует умножить уравнение (4.5) на и и вычесть результаты соответственно из второго и третьего уравнений системы. В результате получим:

, (4.6)

где .

Все проделанное для системы уравнений (4.4) полностью повторяется для системы уравнений (4.6). Делим первое уравнений системы (4.6) на . Получаем

, (4.7)

где , .

Исключив из второго уравнения системы (4.6), получаем

, (4.8)

где

Объединяя уравнения (4.5), (4.7) и (4.8) в систему, получим:

(4.9)

Система уравнений (4.9), представленная треугольной матрицей , эквивалентна исходной системе (4.4), но позволяет быстро найти все неизвестные. Начиная с третьего уравнения системы (4.9), последовательно находим:

(4.10)

Таким образом, решение системы линейных уравнений по методу Гаусса распадается на два этапа:

u прямой ход – приведение системы уравнений (4.4) к виду (4.9) с треугольной матрицей;

u обратный ход = определение неизвестных по формуле (4.10).

Рассмотрим общий случай, а именно решение системы линейных уравнений вида:

,

Которая в матричной форме имеет вид: , где А – матрица размера имеет компоненты , а матрицы-столбцы X и B соответственно компоненты и

Элементарными преобразованиями приведём расширенную матрицу этой системы к ступенчатому виду. При этом возможны три случая:

1) система получилась в виде: .
Начиная с последней строки, двигаясь к первой, находим последовательно . Решение системы будет единственное. Этот случай соответствует .

2) система получилась в виде: .
Неизвестные переносим в правую часть и считаем их свободными
Далее, начиная с последней строки, находим неизвестные , выраженные через свободные неизвестные .
Решений системы бесчисленное множество. Этот случай соответствует .

3) Система получилась в виде: , - система не совместна. Этот случай соответствует .

 

Пример 4.3.Установить совместность и решить систему: .

Решение:

В расширенной матрице системы поменяем 1-ю и 2-ю строки для того, чтобы элемент был равен «1».

~ ~ ~ ~

~ ~ ~

Имеем . Ранги матрицы системы и её расширенной матрицы совпали с числом неизвестных. Согласно теореме Кронекера-Капелли система уравнений совместна и решение её единственно. Запишем преобразованную расширенную матрицу в виде системы уравнений:

, следовательно .

Ответ запишем в виде .

 








Дата добавления: 2019-02-07; просмотров: 382;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.