Методы исследования математических моделей

 

Все методы математического моделирования можно разделить на четыре класса:

1. аналитические (априорные);

2. имитационные (априорно-апостериорные) модели;

3. эмпирико-статистические (апостериорные) модели;

4. модели, в которых в той или иной форме представлены идеи искусственного интеллекта (самоорганизация, эволюция, нейросетевые конструкции и т.д.).

 

Аналитические модели (англ. analytical models) – один из классов математического моделирования, широко используемый в экологии. При построении таких моделей исследователь сознательно отказывается от детального описания экосистемы, оставляя лишь наиболее существенные, с его точки зрения, компоненты и связи между ними, и использует достаточно малое число правдоподобных гипотез о характере взаимодействия компонентов и структуры экосистемы. Аналитические модели служат, в основном, целям выявления, математического описания, анализа и объяснения свойств или наблюдаемых феноменов, присущих максимально широкому кругу экосистем. Так, например, широко известная модель конкуренции Лотки–Вольтерра позволяет указать условия взаимного сосуществования видов в рамках различных сообществ.

Имитационные модели (англ. simulation models) – один из основных классов математического моделирования. Целью построения имитаций является максимальное приближение модели к конкретному (чаще всего уникальному) экологическому объекту и достижение максимальной точности его описания. Имитационные модели претендуют на выполнение как объяснительных, так и прогнозных функций, хотя выполнение первых для больших и сложных имитаций проблематично (для удачных имитационных моделей можно говорить лишь о косвенном подтверждении непротиворечивости положенных в их основу гипотез). Имитационные модели реализуются на ЭВМ с использованием блочного принципа, позволяющего всю моделируемую систему разбить на ряд подсистем, связанных между собой незначительным числом обобщенных взаимодействий и допускающих самостоятельное моделирование с использованием своего собственного математического аппарата (в частности, для подсистем, механизм функционирования которых неизвестен, возможно построение регрессионных или самоорганизующихся моделей). Такой подход позволяет также достаточно просто конструировать, путем замены отдельных блоков, новые имитационные модели. Если имитационные модели реализуются без блочного принципа, можно говорить о квазиимитационном моделировании. Имитации, в которых все коэффициенты определены по результатам экспериментов над конкретной экосистемой, называются портретными моделями (цитата из В.В. Налимова [1971]: “поражают иной раз так называемые "портретные модели", в которых не заключено какое-либо большое содержание, а просто на языке математики записывается то, что с одинаковым успехом можно было бы выразить и на обычном языке. Ясно, что такие модели вызывают только раздражение у представителей конкретных областей знаний. Что нового, например, получила биология от того, что часть ее представлений была переформулирована в терминах теории информации?”) Методы построения имитационных моделей чаще всего основываются на классических принципах системной динамики Дж. Форрестера [1978] (см. также [Гильманов, 1978; Крапивин c соавт., 1982]). Создание имитационных моделей сопряжено с большими затратами. Так, модель ELM (злаковниковой экосистемы, используемой под пастбище) строилась 7 лет с годовым бюджетом программы в 1,5 млн. долл. около 100 научными сотрудниками из более 30 научных учреждений США, Австралии и Канады [цит. по: Розенберг., 1984].

В настоящее время можно отметить два направления развития имитационного моделирования, где предлагаются достаточно конструктивные методы компенсации априорной неопределенности, проистекающей от нестационарного и стохастического характера экологических систем.

Первое направление оформилось в виде методики решения задач идентификации и верификации как последовательного процесса определения и уточнения численных значений коэффициентов модели [Георгиевский, 1982; Сердюцкая, 1984].

Второе направление связано со стратегией поиска скрытых закономерностей моделируемой системы и интеграции их в модель [Лапко с соавт., 1999].

 

Эмпирико-статистические модели объединяют в себе практически все биометрические методы первичной обработки экспериментальной информации. Основная цель построения этих моделей состоит в следующем:

- упорядочение или агрегирование информации;

- поиск, количественная оценка и содержательная интерпретация причинно-следственных отношений между переменными системы;

- оценка достоверности и продуктивности различных гипотез о взаимном влиянии наблюдаемых явлений и воздействующих факторов;

- идентификация параметров расчетных уравнений различного назначения.

Часто эмпирико-статистические модели являются "сырьем" и обоснованием подходов к построению моделей других типов (в первую очередь, имитационных). Важным методологическим вопросом является определение характера зависимости между факторами и результативными показателями: функциональная она или стохастическая, прямая или обратная, прямолинейная или криволинейная и т.д. Здесь используются теоретикостатистические критерии, практический опыт, а также способы сравнения параллельных и динамичных рядов, аналитических группировок исходной информации, графические методы и др. Детерминированный анализ представляет собой методику исследования влияния факторов, связь которых с результативным показателем носит явно выраженный функциональный характер, т.е. когда результативный показатель представляется в виде произведения, частного или алгебраической суммы исходных факторов. Стохастический анализ представляет собой обширный класс методов, опирающихся на теоретико-вероятностные представления, теоремы, критерии и методы параметрической и непараметрической статистики. Искусственный интеллект ИИ (artificial intelligence) обычно трактуется как свойство автоматических систем брать на себя отдельные функции мыслительной способности человека, например, выбирать и принимать оптимальные решения на основе ранее полученного опыта и рационального анализа внешних воздействий. Речь идет, в первую очередь, о системах, в основу которых положены принципы обучения, самоорганизации и эволюции при минимальном участии человека, но привлечении его в качестве учителя и партнёра, гармоничного элемента человеко-машинной системы.

 

Этапы построения математической модели Сущность построения математической модели состоит в том, что реальная система упрощается, схематизируется и описывается с помощью того или иного математического аппарата.

Можно выделить следующие основные этапы построения моделей.

1. Содержательное описание моделируемого объекта. Объекты моделирования описываются с позиций системного подхода. Исходя из цели исследования устанавливаются совокупность элементов, взаимосвязи между элементами, возможные состояния каждого элемента, существенные характеристики состояний и отношения между ними. Например, фиксируется, что если значение одного параметра возрастает, то значение другого — убывает и т.п. Вопросы, связанные с полнотой и единственностью выбора характеристик, не рассматриваются. Естественно, в таком словесном описании возможны логические противоречия, неопределенности. Это исходная естественно-научная концепция исследуемого объекта. Такое предварительное, приближенное представление системы называют концептуальной моделью. Для того чтобы содержательное описание служило хорошей основой для последующей формализации, требуется обстоятельно изучить моделируемый объект. Нередко естественное стремление ускорить разработку модели уводит исследователя от данного этапа непосредственно к решению формальных вопросов. В результате построенная без достаточного содержательного базиса модель оказывается непригодной к использованию. На этом этапе моделирования широко применяются качественные методы описания систем, знаковые и языковые модели.

2. Формализация операций. Формализация сводится в общих чертах к следующему. На основе содержательного описания определяется

исходное множество характеристик системы. Для выделения существенных характеристик необходим хотя бы приближенный анализ каждой из них. При проведении анализа опираются на постановку задачи и понимание природы исследуемой системы. После исключения несущественных характеристик выделяют управляемые и неуправляемые параметры и производят символизацию. Затем определяется система ограничений на значения управляемых параметров. Если ограничения не носят принципиальный характер, то ими пренебрегают. Дальнейшие действия связаны с формированием целевой функции модели. В соответствии с известными положениями выбираются показатели исхода операции и определяется примерный вид функции полезности на исходах. Если функция полезности близка к пороговой (или монотонной), то оценка эффективности решений возможна непосредственно по показателям исхода операции. В этом случае необходимо выбрать способ свертки показателей (способ перехода от множества показателей к одному обобщенному показателю) и произвести саму свертку. По свертке показателей формируются критерий эффективности и целевая функция. Если при качественном анализе вида функции полезности окажется, что ее нельзя считать пороговой (монотонной), прямая оценка эффективности решений через показатели исхода операции неправомочна. Необходимо определять функцию полезности и уже на ее основе вести формирование критерия эффективности и целевой функции. В целом замена содержательного описания формальным — это итеративный процесс.

3. Проверка адекватности модели. Требование адекватности находится в противоречии с требованием простоты, и это нужно учитывать при проверке модели на адекватность. Исходный вариант модели предварительно проверяется по следующим основным аспектам: o Все ли существенные параметры включены в модель? o Нет ли в модели несущественных параметров? o Правильно ли отражены функциональные связи между параметрами? o Правильно ли определены ограничения на значения параметров? Для проверки рекомендуется привлекать специалистов, которые не принимали участия в разработке модели. Они могут более объективно рассмотреть модель и заметить ее слабые стороны, чем ее разработчики. Такая предварительная проверка модели позволяет выявить грубые ошибки. После этого приступают к реализации модели и проведению исследований. Полученные результаты моделирования подвергаются анализу на соответствие известным свойствам исследуемого объекта.

Для установления соответствия создаваемой модели оригиналу используются следующие пути:

- o сравнение результатов моделирования с отдельными экспериментальными результатами, полученными при одинаковых условиях;

- o использование других близких моделей;

- o сопоставление структуры и функционирования модели с прототипом.

Главным путем проверки адекватности модели исследуемому объекту выступает практика. Однако она требует накопления статистики, которая далеко не всегда бывает достаточной для получения надежных данных. Для многих моделей первые два приемлемы в меньшей степени. В этом случае остается один путь: заключение о подобии модели и прототипа делать на основе сопоставления их структур и реализуемых функций. Такие заключения не носят формального характера, поскольку основываются на опыте и интуиции исследователя. По результатам проверки модели на адекватность принимается решение о возможности ее практического использования или о проведении корректировки.

4. Корректировка модели. При корректировке модели могут уточняться существенные параметры, ограничения на значения управляемых параметров, показатели исхода операции, связи показателей исхода операции с существенными параметрами, критерий эффективности. После внесения изменений в модель вновь выполняется оценка адекватности.

5. Оптимизация модели. Сущность оптимизации моделей состоит в их упрощении при заданном уровне адекватности. Основными показателями, по которым возможна оптимизация модели, выступают время и затраты средств для проведения исследований на ней. В основе оптимизации лежит возможность преобразования моделей из одной формы в другую. Преобразование может выполняться либо с использованием математических методов, либо эвристическим путем.

 








Дата добавления: 2019-02-07; просмотров: 3924;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.