Рассмотрим случай 2 (два индивидуальных профиля).

 

Здесь ранжируются индивидуальные значения, полученные каждым из 2-х испытуемых по определенному (одинаковому для них обоих) набору признаков. Первый ранг получит признак с самым низким значением; второй ранг - признак с более высоким значением и т.д. Очевидно, что все признаки должны быть измерены в одних и тех же единицах, иначе ранжирование невозможно.

Например, невозможно проранжировать показатели по личностному опроснику Кеттелла (16PF), если они вы­ражены в "сырых" баллах, поскольку по разным факторам диапазоны значений различны: от 0 до 13, от 0 до 20 и от 0 до 26. Мы не мо­жем сказать, какой из факторов будет занимать первое место по выра­женности, пока не приведем все значения к единой шкале (чаще всего это шкала стенов).

 

Если индивидуальные иерархии двух испытуемых связаны поло­жительно, то признаки, имеющие низкие ранги у одного из них, будут иметь низкие ранги и у другого, и наоборот. Например, если у одного испытуемого фактор Е (доминантность) имеет самый низкий ранг, то и у другого испытуемого он должен иметь низкий ранг, если у одного испытуемого фактор С (эмоциональная устойчивость) имеет высший ранг, то и другой испытуемый должен иметь по этому фактору высокий ранг и т.д.

Рассмотрим случай 3 (два групповых профиля).

Здесь ранжи­руются среднегрупповые значения, полученные в 2-х группах испытуе­мых по определенному, одинаковому для двух групп, набору признаков. В дальнейшем линия рассуждений такая же, как и в предыдущих двух случаях.

Рассмотрим случай 4 (индивидуальный и групповой профили).

Здесь ранжируются отдельно индивидуальные значения испытуемого и среднегрупповые значения по тому же набору признаков, которые полу­чены, как правило, при исключении этого отдельного испытуемого - он не участвует в среднегрупповом профиле, с которым будет сопоставляться его индивидуальный профиль. Ранговая корреляция позволит проверить, насколько согласованы индивидуальный и групповой профили.

 

Во всех четырех случаях значимость полученного коэффициента корреляции определяется по количеству ранжированных значений N.

*В первом случае это количество будет совпадать с объемом выборки п.

*Во втором случае количеством наблюдений будет количество признаков, составляющих иерархию.

*В третьем и *четвертом случае N - это также количество сопоставляемых признаков, а не количество испытуемых в группах.

Подробные пояснения даны в примерах.

 

Если абсолютная величина rs достигает критического значения или превышает его, корреляция достоверна.

Гипотезы

Возможны два варианта гипотез. Первый относится к случаю 1, второй - к трем остальным случаям.

Первый вариант гипотез

H0: Корреляция между переменными А и Б не отличается от нуля.

H1: Корреляция между переменными А и Б достоверно отличается от нуля.

 

Второй вариант гипотез

H0: Корреляция между иерархиями А и Б не отличается от нуля.

H1: Корреляция между иерархиями А и Б достоверно отличается от нуля.








Дата добавления: 2018-09-24; просмотров: 299;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.