КОНЕЧНЫЕ ПРОДУКТЫ РАСПАДА АМИНОКИСЛОТ

 

В результате многообразных процессов в организме аминокислоты полностью распадаются до аммиака, углекислого газа и воды. Вода является необходимым веществом для всех обменных процессов. Углекислый газ участвует в построении карбонатной буферной системы, в активированной форме используется для синтеза жирных кислот, пуриновых и пиримидиновых оснований, углеводов (в процессе глюконеогенеза). Оставшееся его часть выводиться из организма легкими. Аммиак является одним из источников азота в организме.

 

Как видно, азот используется для поддержания азотистого равновесия, в том числе для синтеза белка, построения небелковых азотсодержащих веществ (пуриновых и пиримидовых азотистых оснований, холина, креатина, глюкозаминов и пр.). Однако определенная часть азота оказывается связанной в форме аммиака, который для организма является токсичным. Однако отравление им не происходит, так как в организме весьма активны процессы обезвреживания аммиака.

К общим путям превращения аминокислот относят процессы трансаминирования, дезаминирования, декарбоксилирования.

Первый шаг вступления аминокислот в общие пути метаболизма – удаление аминогруппы.

 

Существуют два типа реакций, удаляющих аминогруппу.

Реакции прямого дезаминированияпозволяют получить свободный аммиак:

  R – CH – COOH → R – C – COOH + NH3↑ | || NH2 O  

Реакции непрямого дезаминирования представляет собой сочетание реакции переаминирования (перенос аминогруппы аминокислоты на акцептор – чаще всего на α-кетоглутаровую кислоту) с последующей реакцией прямого дезаминирования образовавшейся аминокислоты (главным образом глутаминовой).

  α-Аминокислота α-Кетокислота  
       
   
 
 

 

 


α-Кетоглутарат Глутамат

 

 
 

 

 


NH4+

 

ДЕЗАМИНИРОВАНИЕ АМИНОКИСЛОТ – реакция отщепления аминогруппы с выделением NH3.

Существует несколько способов дезаминирования:

а) восстановительное – с образованием карбоновых кислот

 

+2H

R – CH – COOH R – CH2 – COOH + NH3

|

NH2

б) окислительное – с образованием кетокислот

R – CH – COOH + 1/2O2 ↔ R – C – COOH + NH3

| ||

NH2 O

в) гидролитическое – с образованием гидроксикарбоновых кислот

R – CH – COOH + H2O ↔ R – CH – COOH + NH3

| |

NH2 OH

г) внутримолекулярное – с образованием ненасыщенных кислот

R – CH – COOH ↔ R1 – CH = CH – COOH + NH3

|

NH2

Такие реакции входят в группу прямого дезаминирования. Наиболее важную роль среди этой группы реакций у человека играет окислительное дезаминирование. Ферменты, катализирующие эти реакции, называются оксидазами (кофермент ФМН – флавинмононуклеотид и ФАД – флавинадениндинуклеотид) или дегидрогеназы (кофермент НАД+ и НАДФ+).

Реакции, катализируемые оксидазами, в клетке протекают медленно, а наибольшей активностью обладает фермент глутаматдегидрогеназа, роль которой в обмене аминокислот велика. Фермент глутаматдегидрогеназа широко представлен в печени, мозге и катализирует превращение глутаминовой кислоты в α-кетоглутаровую кислот:

  ГДГ HOOC–CH2–CH2–CH–COOH HOOC–CH2-CH2-C-COOH+NH3 | || NH2 O Глутаминовая кислота α-кетоглутаровая кислота    

 

  CH3 COOH CH3 COOH COOH | | | | + 1/2O2 | CH-NH2 + CH2 C=O + CH2 CH2+NH3 | | | | | COOH CH2 COOH CH2 CH2 аланин | пируват | | C=O HC–NH2 C=O | | | COOH COOH COOH α-кетоглутаровая α-глутаминовая α-кетоглутаровая кислота кислота кислота  

 

Продукт реакции α-кетоглутаровая кислота является хорошим субстратом в реакциях переаминирования – реакции, в которых происходит как бы обмен аминогруппы на кетогруппу между аминокислотой и кетокислотой:

 

α-аланин → пируват (трансаминирование), α-глутаминовая кислота → кетоглутаровая кислота (окислительное дезаминирование).

Такое сочетание переаминирования аминокислот с участием кетоглутаровой кислоты с последующим дезаминированием глутаминовой кислоты получило название непрямого дезаминирования – основной путь дезаминирования аминокислот.

(Непрямое дезаминирование α-аминокислот связано с предварительным переносом их аминогруппы на кетоглутаровую кислоту путем переаминирования).

Большинство аминокислот теряют свою аминогруппу не путём описанного выше прямого дезаминирования, а передают аминогруппу на α-кетокислотный акцептор. ТРАНСАМИНИРОВАНИЕ – реакции, в ходе которых аминогруппа переносится от донорской аминокислоты к акцепторной α-кетокислоте. В результате получается α-кетокислота из донорской аминокислоты и новая аминокислота. Реакции катализируют ферменты трансаминазы с участием кофермента пиридоксальфосфата (производное Vit B6).

Трансаминирование происходит практически во всех органах. Играет основную роль в процессах мочевинообразования, глюконеогенеза, путях образования новых аминокислот.

Выделены трансаминазы, катализирующие переаминирование большинства аминокислот. Например, после поступления пищевых аминокислот из воротной вены значительная часть их в печени подвергается переаминированию. Исключением являются аминокислоты с разветвлённым углеводородным радикалом, для которых в печени нет соответствующих трансаминаз, о чём говорит более высокая концентрация таких аминокислот в крови, оттекающей от печени, по сравнению с концентрацией в крови воротной вены.

  Аланиновая трансаминаза АЛТ АЛА + α-КГ ↔ Пируват + ГЛУ Аспарагиновая трансаминаза АСТ АСП + α-КГ ↔ Оксалоацетат + ГЛУ Тирозиновая трансаминаза ТТ ТИР + α-КГ ↔ р-ОН – фенилпируват + ГЛУ  

 








Дата добавления: 2018-03-01; просмотров: 1419;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.011 сек.