Актуальность изучения экологии 11 страница

Возрастание стабильности систем. При сукцессии в значительной степени развивается взаимовыгодный симбиоз, возрастает резистентная устойчивость, снижается упругая устойчивость, возрастает эффективность использования энергии и биогенных элементов.

Современные экологи рассматривают сукцессию с точки зрения самоорганизации экосистемы и самоорганизацию как свойство неравновесных термодинамических систем. Сукцессия протекает таким образом, что система накапливает разнообразие и специализацию до тех пор, пока уровень неопределенности окружающей среды не обратит дальнейшее усложнение организации во вред системе. Самоорганизующиеся диссипативные системы развиваются во времени так, чтобы оптимизировать свою независимость (сложность биомассы и потоков в сетях). Таким образом, самоорганизованное развитие – это свойство экосистем.

5.1.3. Концепция климакса

Климаксом называют терминальную стабилизированную экосистему или, иногда, окончательную фазу развития экосистемы, в которой она устойчиво удерживается длительное время практически при любой амплитуде внешних воздействий.

Теоретически климаксное сообщество поддерживает само себя неопределенно долго, все внутренние его компоненты уравновешены друг с другом, и оно находится в равновесии с физической средой.

Обычно критерием того, является ли данное сообщество климаксным или нет, служит видовой состав. Однако одного этого критерия недостаточно, поскольку видовой состав заметно меняется в ответ на сезонные и кратковременные колебания погоды, даже если экосистема в целом остается стабильной. Наилучшим критерием терминальной стабилизации климакса служит отношение P/R. В климаксном сообществе в отличие от развивающихся стадий и других переходных сообществ годовая продукция P и «импорт» уравновешиваются годовым потреблением (дыханием) R и «экспортом».

Особенно удобно использовать отношение P/R для характеристики некоторых циклических сукцессий как климаксных, если для них брать P и R как усредненные значения за период цикла. Циклические сукцессии обычно имеют место, когда в силу периодических возмущений внешней среды или вследствие характера развития самого сообщества изменения в нем происходят через более или менее регулярные промежутки времени.

Удобно, хотя и несколько произвольно, различать для данной области:

1) единственный региональный, или климатический климакс, находящийся в равновесии с общими климатическими условиями;

2) различное число локальных, или эдафических климаксов, которые представляют собой модификации стационарных состояний, соответствующие особым местным условиям субстрата.

В тех местах, где рельеф местности, почва, водный режим и регулярные возмущения, например пожары, препятствуют развитию экосистемы до теоретического конечного состояния (климатического климакса), сукцессия заканчивается эдафическим климаксом.

Аутогенная экологическая сукцессия происходит в результате изменений окружающей среды, вызванных самими организмами. Поэтому, чем более экстремальны физические условия среды, тем труднее становится модификация окружающей среды и тем больше вероятность того, что развитие сообщества прекратится, не достигнув теоретического регионального климатического климакса.

Человек сильно влияет на ход сукцессии и достижение климакса. Под влиянием человека может сформироваться либо антропогенный субклимакс, либо дисклимакс (то есть нарушенный климакс), которые принципиально отличаются от климатического или эдафического климакса. Например, чрезмерный выпас может привести к преобразованию степи – климатического климакса – в пустынное сообщество – дисклимакс. Пустынное сообщество в таких условиях – показатель бесхозяйственности человека, тогда как в регионе с настоящим пустынным климатом его следует считать естественным.

Сельскохозяйственные экосистемы, остающиеся долгое время стабильными, определенно можно рассматривать как климаксы, поскольку в среднем за год «импорт» и продукция уравновешивают дыхание и «экспорт» (урожай), и ландшафт при этом из года в год не меняется. Примерами длительного антропогенного стационарного состояния являются сельское хозяйство в Голландии и Бельгии и древняя культура риса на Востоке. К сожалению, многие системы ведения сельского хозяйства, особенно в тропиках и орошаемых пустынях, никоим образом нельзя считать стабильными, так как эти системы подвержены эрозии, выщелачиванию, засолению и нашествиям вредителей. Поддержание высокой продуктивности таких систем требуют все возрастающих энергетических субсидий, а слишком крупные субсидии могут оказаться стрессовыми для системы.

5.2. Основные экологические законы

Рассмотрим главнейшие, экологические законы, они приведены в алфавитном порядке.

Закон биогенной миграции атомов (или закон Вернадского): миграция химических элементов на земной поверхности и в биосфере в целом осуществляется под превосходящим влиянием живого вещества, организмов. Так происходило и в геологическом прошлом, миллионы лет назад, так происходит и в современных условиях. Живое вещество или принимает участие в биохимических процессах непосредственно, или создает соответствующую, обогащенную кислородом, углекислым газом, водородом, азотом, фосфором и другими веществами, среду. Этот закон имеет важное практическое и теоретическое значение. Понимание всех химических процессов, которые происходят в геосферах, невозможно без учета действия биогенных факторов, в частности — эволюционных. В наше время люди влияют на состояние биосферы, изменяя ее физический и химический состав, условия сбалансированной веками биогенной миграции атомов. В будущем это послужит причиной очень отрицательных изменений, которые приобретают способность саморозвиваться и становятся глобальными, неуправляемыми (опустынивание, деградация грунта, вымирание тысяч видов организмов). С помощью этого закона можно сознательно и активно предотвращать развитие таких отрицательных явлений, руководить биогеохимическими процессами, используя «мягкие» экологические методы.

Закон внутреннего динамического равновесия: вещество, энергия, информация и динамические качества отдельных естественных систем и их иерархии очень тесно связанные между собою, так что любое изменение одного из показателей неминуемое приводит к функционально-структурным изменениям других, но при этом сохраняются общие качества системы — энергетические, информационные и динамические. Следствия действия этого закона обнаруживаются в том, что после любых изменений элементов естественной среды (вещественного состава, энергии, информации, скорости естественных процессов и т.п.) обязательно развиваются цепные реакции, которые стараются нейтрализовать эти изменения. Следует отметить, что незначительное изменение одного показателя может послужить причиной сильных отклонений в других и в всей экосистеме.

Изменения в больших экосистемах могут иметь необратимый характер, а любые локальные преобразования природы вызовут в биосфере планеты (то есть в глобальном масштабе) и в ее наибольших подразделах реакции ответа, которые предопределяют относительную неизменность эколого-экономического потенциала. Искусственное возрастание эколого-экономического потенциала ограниченное термодинамической стойкостью естественных систем.

Закон внутреннего динамического равновесия — один из главнейших в природопользовании. Он помогает понять, что в случае незначительных вмешательств в естественную среду ее экосистемы способны саморегулироваться и восстанавливаться, но если эти вмешательства превышают определенные границы (которые человеку следует хорошо знать) и уже не могут «угаснуть» в цепи иерархии экосистем (охватывают целые речные системы, ландшафты), они приводят к значительным нарушениям энерго- и биобаланса на значительных территориях и в всей биосфере.

Закон генетического разнообразия: все живое генетическое разное и имеет тенденцию к увеличению биологической разнородности.

Закон имеет важное значение в природопользовании, в особенности в сфере биотехнологии (генная инженерия, биопрепараты), если не всегда можно предусмотреть результат нововведений во время выращивания новых микрокультур через возникающие мутации или распространение действия новых биопрепаратов не на те виды организмов, на которые они рассчитывались.

Закон исторической необратимости: развитие биосферы и человечества как целого не может происходить от более поздний фаз к начальным, общий процесс развития однонаправленный. Повторяются лишь отдельные элементы социальных отношений (рабство) или типы хозяйничанья.

Закон константности (сформулированный В. Вернадским): количество живого вещества биосферы (за определенное геологическое время) есть величина постоянная. Этот закон тесно связан с законом внутреннего динамического равновесия. По закону константности любое изменение количества живого вещества в одном из регионов биосферы неминуемое приводит к такой же по объему изменения вещества в другом регионе, только с обратным знаком.

Следствием этого закона есть правило обязательного заполнения экологических ниш.

Закон корреляции (сформулированный Ж. Кювье): в организме как целостной системе все его части отвечают одна другой как за строением, так и за функциями. Изменение одной части неминуемо вызовет изменения в других.

Закон максимизации энергии (сформулированный Г. и Ю. Одумами и дополненный М. Рэймерсом): в конкуренции с другими системами сохраняется та из них, которая наибольшее оказывает содействие поступлению энергии и информации и использует максимальную их количество наиэффективнее. Для этого такая система, большей частью, образовывает накопители (хранилища) высококачественной энергии, часть которой тратит на обеспечение поступления новой энергии, обеспечивает нормальный кругооборот веществ и создает механизмы регулирования, поддержки, стойкости системы, ее способности приспосабливаться к изменениям, налаживает обмен с другими системами. Максимизация — это повышение шансов на выживание.

Закон максимума биогенной энергии (закон Вернадского—Бауэра): любая биологическая и «бионесовершенная» система с биотой, которая находится в состоянии «стойкого неравновесия» (динамично подвижного равновесия с окружающей средой), увеличивает, развиваясь, свое влияние на среду.

В процессе эволюции видов, твердит Вернадский, выживают те, которые увеличивают биогенную геохимическую энергию. По мнению Бауера, живые системы никогда не находятся в состоянии равновесия и выполняют за счет своей свободной энергии полезную работу против равновесия, которого требуют законы физики и хими за существующих внешних условий.

Вместе с другими фундаментальными положениями закон максимума биогенной энергии служит основой разработки стратегии природопользования.

Закон минимума (сформулированный Ю. Либихом): стойкость организма определяется самым слабым звеном в цепи ее экологических потребностей. Если количество и качество экологических факторов близкие к необходимому организму минимума, он выживает, если меньшие за этот минимум, организм гибнет, экосистема разрушается.

Поэтому во время прогнозирования экологических условий или выполнение экспертиз очень важно определить слабое звено в жизни организмов.

Закон ограниченности естественных ресурсов: все естественные ресурсы в условиях Земли исчерпаемые. Планета есть естественно ограниченным телом, и на ней не могут существовать бесконечные составные части.

Закон однонаправленности потока энергии:энергия, которую получает экосистема и которая усваивается продуцентами, рассеивается или вместе с их биомассой необратимо передается консументам первого, второго, третьего и других порядков, а потом редуцентам, что сопровождается потерей определенного количества энергии на каждом трофическом уровне в результате процессов, которые сопровождают дыхание. Поскольку в обратный поток (от редуцентов к продуцентам) попадает очень мало начальной энергии (не большее 0,25%), термин «кругооборот энергии» есть довольно условным

Закон оптимальности:никакая система не может суживаться или расширяться к бесконечности. Никакой целостный организм не может превысить определенные критические размеры, которые обеспечивают поддержку его энергетики. Эти размеры зависят от условий питания и факторов существования.

В природопользовании закон оптимальности помогает найти оптимальные с точки зрения производительности размеры для участков полей, выращиваемых животных, растений. Игнорирование закона — создание огромных площадей монокультур, выравнивание ландшафта массовыми застройками и т.п. — привело к неприродной однообразности на больших территориях и вызвало нарушение в функционировании экосистем, экологические кризы.

Закон пирамиды энергий (сформулированный Р. Линдеманом): с одного трофического уровня экологической пирамиды на другого переходит в среднем не более 10 % энергии.

По этому закону можно выполнять расчеты земельных площадей, лесных угодий с целью обеспечения население продовольствием и другими ресурсами.

Закон равнозначности условий жизни:все естественные условия среды, необходимые для жизни, играют равнозначные роли. Из него вытекает другой закон-совокупного действия экологических факторов. Этот закон часто игнорируется, хотя имеет большое значение.

Закон развития окружающей среды: любая естественная система развивается лишь за счет использования материально-энергетических и информационных возможностей окружающей среды. Абсолютно изолированное саморазвитие невозможно — это вывод из законов термодинамики.

Очень важными являются следствия закона:

1. Абсолютно безотходное производство невозможное.

2. Любая более высокоорганизованная биотическая система в своем развитии есть потенциальной угрозой для менее организованных систем. Поэтому в биосфере Земли невозможно повторное зарождение жизни — оно будет уничтожено уже существующими организмами

3. Биосфера Земли, как система, развивается за счет внутренних и космических ресурсов.

Закон уменьшения энергоотдачи в природопользовании: в процессе получения из естественных систем полезной продукции с течением времени (в историческом аспекте) на ее изготовление в среднем расходуется все больше энергии (возрастают энергетические затраты на одного человека). Так, ныне затраты энергии на одного человека за сутки почти в 60 раз большие, чем во времена наших далеких предков (несколько тысяч лет тому) . Увеличение энергетических затрат не может происходить бесконечно, его можно и следует рассчитывать, планируя свои отношения с природой с целью их гармонизации.

Закон совокупного действия естественных факторов (закон Митчерлиха—Тинемана—Бауле): объем урожая зависит не от отдельного, пусть даже лимитирующего фактора, а от всей совокупности экологических факторов одновременно. Частицу каждого фактора в совокупном действии ныне можно подсчитать. Закон имеет силу при определенных условиях - если влияние монотонное и максимально обнаруживается каждый фактор при неизменности других в той совокупности, которая рассматривается.

Закон толерантности (закон Шелфорда): лимитирующим фактором процветания организма может быть как минимум, так и максимум экологического влияния, диапазон между которыми определяет степень выносливости (толерантности) организма к данному фактору. Соответственно закону любой излишек вещества или энергии в экосистеме становится его врагом, загрязнителем.

Закон грунтоистощения (уменьшение плодородия):постепенное снижение естественного плодородия почв происходит из-за продолжительного их использования и нарушения естественных процессов почвообразования, а также вследствие продолжительного выращивания монокультур (в результате накопления токсичных веществ, которые выделяются растениями, остатков пестицидов и минеральных удобрений).

Закон физико-химического единства живого вещества(сформулированный В. Вернадским): все живое вещество Земли имеет единую физико-химическую природу. Из этого явствует, что вредное для одной части живого вещества вредит и другой его части, только, конечно, разной мерой. Разность состоит лишь в стойкости видов к действию того ли другого агента. Кроме того, через наличие в любой популяции более или менее стойких к физико-химическому влиянию видов скорость отбора за выносливостью популяций к вредному агенту прямо пропорциональная скорости размножения организмов и дежурство поколений. Через это продолжительное употребление пестицидов экологически недопустимое, так как вредители, которые размножаются значительно более быстро, более быстро приспосабливаются и выживают, а объемы химических загрязнений приходится все более увеличивать.
Закон экологической корреляции: в экосистеме, как и в любой другой системе, все виды живого вещества и абиотические экологические компоненты функционально отвечают один другому. Выпадание одной части системы (вида) неминуемо приводит к выключению связанных с ею других частей экосистемы и функциональных изменений.

Научной общественности широко известны также четыре закона экологии американского ученого Б. Коммонера:

1) все связанное со всем;

2) все должно куда-то деваться;

3) природа «знает» лучше;

4) ничто не проходится напрасно (за все надо платить).

Как отмечает М. Реймерс, первый закон Б. Коммонера близкий по смыслу к закону внутреннего динамического равновесия, второй — к этому же закону и закону развития естественной системы за счет окружающей среды, третий — предостерегает нас от самоуверенности, четвертый — снова затрагивает проблемы, которые обобщают закон внутреннего динамического равновесия, законы константности и развития естественной системы. По четвертому закону Б. Коммонера мы должны возвращать природе то, что берем у нее, иначе катастрофа с течением времени неминуемая.

Следует вспомнить также важные экологические законы, сформулированные в работах известного американского эколога Д. Чираса в 1991—1993 гг. Он подчеркивает, что Природа существует вечно (с точки зрения человека) и сопротивляется деградации благодаря действию четырех экологических законов: 1) рецикличности или повторного многоразового использования важнейших веществ; 2) постоянного восстановления ресурсов; 3) консервативного потребления (если живые существа потребляют лишь то (и в таком количестве), что им необходимо, не больше и не меньше); 4) популяционного контроля (природа не допускает «взрывного» роста популяций, регулируя количественный состав того ли другого вида путем создания соответствующих условий для его существования и размножения). Важнейшей задачей экологии Д. Чирас считает изучение структуры и функций экосистем, их уравновешенности, или неуравновешенности, то есть причин стабильности и разбалансирования экосистем.

Таким образом, круг задач современной экологии очень широкий и охватывает практически все вопросы, которые затрагивают взаимоотношения человеческого общества и естественной среды, а также проблемы гармонизации этих отношений. Из сугубо биологической науки, которой была экология всего каких-то 30 - 40 лет тому, сегодня она стала многогранной комплексной наукой, главной целью которой есть разработка научных основ спасения человечества и среды его существование — биосферы планеты, рационального природопользования и охраны природы. Ныне экологическим воспитанием охватываются все слои населения на планете. Познание законов гармонизации, красоты и рациональность природы поможет человечеству найти верные пути выхода из экологического кризиса. Изменяя и в дальнейшем естественные условия (общество не может жить иначе), люди будут вынуждены делать это обдуманно, взвешенно, предусматривая далекую перспективу и опираясь на знание основных экологических законов.

 

6. БИОСФЕРА и ее эволюция

6.1. Биосфера Земли

6.1.1. Общие свойства биосферы

Одной из наиглавнейших особенностей планеты Земля есть существование на ней жизни. Этим она отличается от всех своих соседок по Солнечной системе. Больше того, научные данные свидетельствуют, что такая форма жизни, как на Земле (единственная известная форма), а именно белково-нуклеиновая, существует благодаря объединению нескольких благоприятных астрономических факторов. К ним принадлежат такие: постоянство светимости нашей звезды – Солнца, что существенно не изменялась на протяжении 4.5 млрд. лет существования Земли; большая масса Земли, достаточная для того чтобы удержать вокруг себя довольно плотную атмосферу, большое количество воды на Земле и т.п. Среди этих благоприятных факторов наверное самым удивительным является орбита Земли. Американский ученный М. Харт доказал, что если бы расстояние между Землей и Солнцем была на 5% меньшей или на 1% большей, жизнь на ней была бы невозможной – в первом случае на Земле было бы слишком жарко (как на Венере), во втором - слишком холодно, и Земля постоянно находилась бы в условиях глобального ледникового периода (как Марс).

Область существования живых организмов на Земле называют биосферой (сферой жизни). Впервые этот термин ввел австрийский геолог Э. Зюсс в 1875 г., но распространился он после издания в 1926 г. труда выдающегося ученного В. Вернадского, основателя и первого президента Академии наук Украины. Живые существа (растения, животные, микроорганизмы) существуют на поверхности Земли, в ее атмосфере, гидросфере и верхней части литосферы, в целом образуя пленку жизни (сферу) на нашей планете. Верхняя граница биосферы простирается на 85 км над поверхностью Земли. На таких высотах (в стратосфере) во время запусков геофизических ракет в пробах воздуха обнаружены споры микроорганизмов, правда в латентном (спящем) виде из за слишком неблагоприятных условий существования. Нижняя граница биосферы достигает глубин литосферы, где температура становит 1000С (в молодых складчатых областях – это приблизительно 1.5 – 2 км и на кристаллических щитах – 7-8 км). Однако В.И. Вернадский справедливо относил к биосфере и все горные породы, созданные за счет жизнедеятельности организмов (так называемые былые биосферы, или палеобиосферы), а поскольку почти все породы осадочного чехла Земли так или иначе есть продуктом жизнедеятельности животных и растений, нижняя граница должна находится на глубине 10-15 км ниже земной поверхности.

Приспосабливаемость живых организмов удивляет. Так, живые бактерии обнаружены в горячих гейзерных источниках с температурой до 980 С, активная и довольно разнообразная жизнь бурлит в трещинах антарктических ледников и на наибольших глубинах Мирового океана, даже в океанических водах пораженных сероводородом, также существуют специфические серные бактерии. Когда американские астронавты доставили на Землю для исследования некоторые детали своей автоматической станции «Сервейер», которая три года находилась на поверхности Луны, то в одной из трубок была найдена живая спора бактерии – она попала туда с Земли во время подготовки к запуску станции и сохранила жизнеспособность, несмотря на трехгодовое пребывание в условиях космического вакуума, резких колебаний температуры и высокого уровня радиации.

В. Вернадский доказал, что живые организмы играют очень важную роль в геологических процессах, которые формируют лицо Земли. Химический состав современных атмосферы и гидросферы обусловленный жизнедеятельностью организмов. Большое значение имеют организмы для формирования литосферы – большинство пород, и не только осадочных, а и таких как граниты, так или иначе связаны своим происхождением с биосферой. «Если бы на Земле не было жизни, - писал ученый, - лицо ее было бы таким же неизменным и химически инертным, как недвижимое лицо Луны, как инертные обломки небесных светил».

Минеральное инертное вещество перерабатывается жизнью, превращается в новое качество. Живые организмы не только приспосабливаются к условиям внешней среды, но и активно их меняют. Таким образом, живое и неживое вещество на Земле составляют гармоничное целое, что, собственно, и называется биосферой. Согласно с образным высказыванием российского геолога М. Вассоевича, «биосфера – это и жильцы, и дом, и мы в нем».

Одним из проявлений биологической активности организмов есть скорость их размножения. При идеальных условиях (теоретически) она может достигать скорости звука. Так, К. Линней подсчитал, что три мухи могут съесть антилопу с такой же скоростью, как это делает лев (учитывая скорость размножения мух). Одноклеточная водоросль диатомея теоретически способна за восемь дней создать массу живой материи которая равна земной, а на протяжении следующего дня удвоить ее.

Согласно последним оценкам, сухая масса живого вещества на Земле составляет 2-3 триллиона тонн. Это по сравнению с основными сферами земли очень малая величина. Она например, в 1000 раз меньшая за массу тропосферы, в 10 млн раз – за массу земной коры и в миллиард – за массу Земли. Однако живое вещество отличается от неживого очень высокой активностью, в частности, очень быстрым круговоротом веществ. Все живое вещество атмосферы обновляется в среднем за восемь лет. Биомасса мирового океана восстановляется за 33 дня, его фитомасса каждый день, фитомасса суши – приблизительно за 14 лет из за большей продолжительности жизни наземных растений. Следует учесть, что жизнедеятельность животных, растений и микроорганизмов сопровождается непрерывным обменом веществ между организмами и средой, в следствии чего все химические элементы земной коры, атмосферы и гидросферы многоразово входили в состав тех или иных организмов. Подсчитано, что вся вода планеты проходит цикл расщепления в растительных клетках и восстановления в растительных и животных организмах, то есть обновляется биосферой приблизительно за 2 млн. лет. Образно выражаясь, мы дышим воздухом, которым дышали динозавры, и пьем воду, которая входила в состав тканей юрских папоротников и кембрийских трилобитов.

Живые организмы играют огромную роль в аккумуляции солнечной энергии. Например, залежи каменного угля – это не что иное, как солнечная энергия, накопленная зелеными растениями минувших геологических эпох. Так же можно определить и природу многих минералов, в частности карбоната кальция, который образует огромные массы известняков и почти на 100% имеет биогенное происхождение. Важную роль живые организмы играют в накоплении многих металлов, таких как железо, медь, марганец. Большое значение для биосферы и хозяйственной деятельности человека имеет круговорот азота, серы, фосфора и других элементов. Установлено что любой растворимый, но не летучий элемент может совершать круговорот только через биосферу. Живые организмы накапливают некоторые элементы в своих тканях, а водные жители, кроме того, увеличивают их содержание и в своей среде жизни, то есть в воде (например такие элементы, как молибден, кобальт, никель находятся в водной среде в значительно большем количестве нежели на суше).

Очевидно что за миллиарды лет геологической истории жизнь неузнаваемо изменила внешние оболочки нашей планеты.

6.1.2. Состав и функционирование биосферы

Живой мир Земли, ее биосфера, состоит из организмов трех типов.

Продуценты, или автотрофы, - это организмы, которые производят органическое вещество за счет утилизации солнечной энергии, воды, углекислого газа и минеральных солей. К этому типу принадлежат растения, которых на Земле есть около 350 000 видов.

Консументы, или гетеротрофы – это организмы, которые получают энергию за счет питания автотрофами или другими консументами. К ним принадлежат травоядные животные, хищники и паразиты, а также хищные растения и грибы. Количество видов этой группы наибольшая – свыше 1.5 млн.

Редуценты - микроорганизмы, которые разлагают органическое вещество продуцентов и консументов до простых соединений – воды, углекислого газа и минеральных солей. Их насчитывается 75 тыс. видов.

Все это огромное количество живых существ находится в очень сложных взаимоотношениях между собой и с неживым веществом. Количество возможных связей между членами экологической системы определяется за формулой:

A = (N(N-1))/2,

где А – число связей; N – число видов в экосистеме.

Если, например, в какой то экосистеме находится 1 тыс. видов, то число связей и взаимоотношений между ними будет расчитываться таким образом:

(1000*999)/2,

то есть будет составлять 500 тыс. Среди этих многочисленных связей есть очень важные, незаменимые. Вмешательство человека в процессе деятельности в биосферные взаимосвязи, о значении которых большей частью не имеет правильного представления, часто приводит к нежелательным следствиям. Например, в 30-ые года в Норвегии было решено истребить хищных птиц (полярных сов и ястребов), что уменьшали численность ценной промышленной птицы – полярной куропатки. Объявленные льготы и премии послужили причиной повсеместного отстрела охотниками хищных птиц. Сразу же после этой акции среди куропаток вспыхнула эпидемия, которая почти полностью уничтожила их популяцию. Оказалось, что совы и ястребы выполняли роль санитаров, которые поедало в первую очередь больных, ослабленных куропаток и таким образом предотвращали распространению эпидемии. Неразумное вмешательство в процесс, становление которого длилось тысячелетиями, вызвало относительно инициаторов акции «эффект грабель» (если человек, который неосмотрительно наступает на зубцы, получает удар рукояткой по лбу).

Биосферные связи складывались на протяжении продолжительного времени. В природе нет лишнего, ненужного.








Дата добавления: 2017-09-19; просмотров: 517;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.021 сек.