Метод деления пополам

Метод деления пополам является прекрасной стратегией поиска, когда заранее не существует причин для выбора путей решения из последовательно организованного множества. Предположим, что из-за засорения водопровода у вас на кухне из крана не течет вода. Засорение произошло где-то между местом подсоединения ваших труб к магистральному водопроводу и кухонным краном. Как вы найдете место засорения в трубе, сделав при этом минимальное количество отверстий? (431:)

В этом случае решение (место образования пробки) надо искать по всей длине трубы. Наилучшим способом решения такой задачи является метод деления пополам. Поскольку задача предполагает, что вы будете сверлить трубу в каждом выбранном месте, надо максимально эффективно выбирать эти места. Начните с середины пути между отводом от главной трубы и кухонным краном. Если вы обнаружите, что до этого места вода свободно поступает, то место засорения трубы находится где-то между этой точкой и вашей раковиной. После этого разбейте пополам уже этот участок. Если вода течет и здесь, то вам станет ясно, что пробка находится где-то ближе к раковине, и вам следует разбить пополам оставшийся участок.

Допустим, в результате первой попытки вы обнаружили, что вода не доходит до просверленного места. Тогда засорение должно быть между главной трубой и этой точкой. Следующий поиск вы должны вести именно на этом участке. Таким способом вы будете продолжать поиск, пока место засорения трубопровода не будет найдено. Это очень удобный метод решения подобных задач — например, при решении задачи поиска места разрыва электропроводки в вашем доме или автомобиле.

Вы можете воспользоваться методом деления пополам в игре под названием «Угадай возраст» (я ее сама придумала). Ваши друзья могут «прикинуться» людьми любого возраста. Вы можете угадать возраст любого из них от 0 до 100 не более чем за семь высказанных догадок. Как это проделать? Начните с возраста, лежащего посередине между 0 и 100 — т.е. с 50. Игрок должен будет ответить, старше или моложе 50 лет задуманный возраст. Ответ будет «старше» или «моложе». Положим, он отвечает, что «моложе». Какой возраст вы назовете следующим? Вам следует выбрать возраст посередине между 0 и 50 — т.е. 25. Предположим, теперь он ответит «старше». Ваша третья догадка должна лежать посередине между 25 и 50. Поскольку мы имеем дело только с целыми числами, то следующим должно быть названо число 38. Если теперь он ответит «моложе», вы называете 32, т. е. число, лежащее посередине между 25 и 38. Если ответ «старше», вы выбираете 35 (середина между 32 и 38). Если ответ «моложе», вы называете 33. Теперь вы точно знаете, что игрок загадал себе возраст либо 33, либо 34. Таким образом, любой возраст может быть определен не более чем за семь высказанных предположений. Попробуйте проделать это с некоторыми из своих друзей. Это будет для вас хорошей практикой использования стратегии деления пополам. Вспоминайте об этой стратегии в ситуациях, когда задача имеет несколько возможных равновероятных решений.

Мозговая атака

Лучший способ иметь хорошие идеи — это иметь много идей.

Линус Паулинг

Мозговая атака — это весело. Первоначально она была предложена Осборном (Osborn, 1963) как метод группового решения задачи, но оказалась полезной и для индивидуальной работы над задачей. Мозговая атака нужна для поиска дополнительных путей решения и может быть призвана в помощь всегда, когда возникают трудности с их нахождением. Ее целью является выработка как можно большего (432:) числа решений. Она призвана подтолкнуть людей, занятых решением задачи, к выдвижению самых безумных, невероятных и фантастических идей. Все эти идеи заносятся в список — причем независимо от того, насколько глупыми они кажутся. Принцип, заложенный в основу этой стратегии, заключается в том, что чем больше количество высказанных идей, тем больше вероятность, что, по крайней мере одна из них окажется удачной. Чтобы поощрить творческую силу воображения, правила этой стратегии исключают всякую критику и высмеивание идей, даже если они совершенно бредовые. Вынесение решения о ценности идей переносится на последующие стадии работы над задачей. Иногда различные идеи частично комбинируются в целях усовершенствования. Мозговая атака может быть предпринята большой или маленькой группой людей, а также в одиночку. После проведения мозговой атаки перечень возможных решений должен быть тщательно изучен, чтобы найти решения, выполненные с учетом наложенных на данную задачу ограничений — чаще всего финансовых, временных и этических.

Мозговая атака была эффективно использована одним из производителей пищевых продуктов, который столкнулся с задачей улучшения упаковки картофельных чипсов. Работников корпорации попросили придумать способ упаковки — лучше всех тех, какие они когда-нибудь видели. Один из них предложил упаковывать мокрые чипсы и уверял, что это будет наилучшим решением. Когда вы пытаетесь сложить в пакетик сухие чипсы, они крошатся и плохо укладываются, но если смочить их перед упаковкой, то можно использовать пакеты меньше размером и облегчить их наполнение — пустот в таком пакете будет меньше. Следуя этому совету, работники попробовали сначала смочить чипсы, а затем наполнять ими пакеты. Результат оказался плачевным — чипсы высыхали и превращались в безвкусные крошки. Но эта идея в конце концов привела к широко популярным картофельным чипсам, которые аккуратно, один на другой, уложены в коробку. Эти чипсы изготавливаются из жидкого картофельного пюре, которое запекается в специальных формах. Таким образом, непродуманная и не очень хорошая затея (смачивание картофельных чипсов) вылилась в довольно удачное решение.

Противоречие

Лучшие решения многих задач нередко должны сочетать противоположные свойства. Например, рассмотрим задачу безупречной коробки для пиццы — такой, которая сохраняет пиццу горячей, но при этом не позволяет скапливаться внутри пару, чтобы корочка не становилась влажной. Здесь присутствуют два противоречивых условия — хранить пиццу закрытой, чтобы она оставалась горячей, и не давать конденсироваться пару и увлажнять корочку. Когда вы в следующий раз закажете пиццу, изучите коробку, в которой ее доставили. Большинство коробок для пиццы представляет собой компромисс между двумя упомянутыми выше условиями — крышка закрыта, чтобы сохранить пиццу горячей, но при этом она имеет маленькие вентиляционные отверстия, позволяющие некоторому количеству пара выходить наружу. Это пример компромиссного решения. Пицца остывает быстрее, поскольку через вентиляционные отверстия проникает холодный воздух, но при этом (433:) корочка на ней лишь слегка увлажняется, так как благодаря наличию отверстий количество конденсирующейся влаги ограничено.

Одним из соблазнов при решении любой задачи, включающей в себя противоречие, является отказ от компромисса — т.е. хочется придумать такое решение, которое удовлетворяет всем заданным условиям задачи. Это, конечно, хорошо, но как этого добиться? Что касается задачи упаковки пиццы, то Вальдман и Цуриков (цит. по: Raia, 1994) разработали коробку с «впадинками» (рельефными углублениями) на дне, которые заставляют пар конденсироваться внизу, а не на корочке пиццы — при этом удержанный под пиццей горячий воздух создает дополнительную теплоизоляцию.

Вальдман и Цуриков разработали компьютерную программу, предлагающую бескомпромиссные способы удовлетворения противоречивых условий при решении любых задач. Они просмотрели файлы Патентного бюро США и обнаружили свыше 200 основных принципов решения широкого круга задач, которые могут быть использованы как по отдельности, так и в комбинации друг с другом. Программа начинается с запроса четкого определения типа задачи, которая решается. Это своего рода поиск основных принципов (например, необходимость изоляции и исключение конденсата, безотносительно к пицце). Варианты решений поступают из банка данных, составленного на базе решения других задач, включавших противоречия того же типа — т.е. вызывается нужный алгоритм (те шаги, которые были использованы для решения) теории изобретательного решения задачи. И хотя реклама этого доступного пользователям программного продукта сулит фантастические успехи, необходимо проведение дополнительных исследований беспристрастными специалистами — и вот тогда мы по праву оценим его эффективность. Воспользовавшись основной идеей, мы сможем создать оптимальное решение любой задачи, а затем, по-видимому, начнем думать, как же приспособить ее к конкретным условиям.

Приведем другой пример задачи, включающей в себя противоречия. Рассмотрим задачу сбора помидоров. Механические сборщики томатов сами по себе дешевые и довольно быстрые, но они мнут плоды. Компромиссным решением было бы применение мягких прокладок в устройстве механической сборки или замедление этого процесса, чтобы снизить количество раздавленных помидоров. Но кардинальным правилом теории изобретательного решения задачи является отказ от компромиссов. Лучшей идеей, которая не потребует снижать скорость работы механического сборщика, оставляя при этом плоды целыми, является выращивание помидоров с более толстой кожицей, которая не позволит им быть раздавленными неуклюжими и быстро перемещающимися механическими сборщиками (The Cognition and Technology Group at Vanderbilt, 1993). Итак, очевидное противоречие (быстрый сбор томатов с помощью машин без их повреждения) было разрешено без компромисса.








Дата добавления: 2017-04-20; просмотров: 345;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.