Денатурация и деструкция коллагена

Консистенция готового к употреблению мясопродукта обусловлена степенью разрушения ее соединительно тканных прослоек. Решающее значение играет изменение коллагена, так как эластин при тепловой обработке практически не изменяется.

В процессе нагрева коллагена идет плавление полипептидных цепочек и разрыв связей между цепочками. Денатурация (или сваривание) коллагена сопровождается нарушением специфической конфигурации цепочек и молекулы в целом. При 50…55оС коллагеновые волокна набухают, поглощая воду, при 58…62оС резко сокращается длина волокна (на 60%) и увеличивается его диаметр. Коллаген различных видов мяса имеет неодинаковую температуру денатурации 55…65оС, которая зависит от возраста животного. Фибриллярная структура разрушается, волокна становятся стекловидными, более эластичными, их прочность снижается.

Изменения размера коллагеновых волокон приводит к деформации кусочков мяса. Образовавшийся глютин, в отличие от коллагена, при температуре более 40оС хорошо набухает и неограниченно растворяется в воде. Полный гидролиз коллагена происходит в процессе нагрева при 126оС на протяжении 3 часов.

Растворы глютина при охлаждении образуют студни, прочность которых зависит от концентрации глютина и продолжительности нагрева. Студни при концентрации глютина более 2,5% хорошо сохраняют форму. При дальнейшем нагреве студнеобразующая способность глютина снижается из-за его разрушения. Деструкция коллагена является основной причиной размягчения мяса. В мясе, доведенном до готовности, весь коллаген денатурировал, а часть его перешла в глютин. В среднем в глютин переходит 20…45% коллагена, что обусловлено видом мяса, содержанием и строением соединительной ткани. Излишний распад коллагена приводи к нарушению формы продукта и трудности его порционирования.

На скорость перехода коллагена в глютин влияют следующие технологические факторы:

а) температура среды; при жарке мясопродуктов, когда температура в толще продукта не превышает 80…85оС, переход коллагена в глютин протекает медленно; поэтому тепловая обработка методом жарки возможна только для тех кулинарных частей, в которых коллагена содержится сравнительно мало и морфологическое строение соединительной ткани простое; коллаген рыб подвергается деструкции значительно легче, чем мяса, поскольку имеет более простое строение, в составе его меньше оксипролина, он подвергается деструкции при более низких температурах;

б) реакция среды; подкисление среды пищевыми кислотами ускоряет переход коллагена в глютин;

в) измельчение мяса способствует снижению гидротермической устойчивости коллагена.

Деструкция коллагена до глютина ускоряется и в щелочной среде. Это используется в мясной промышленности для выработки желатина, который представляет собой высушенный глютин.

 

БЕЛКИ МОЛОКА

Молоко – это полидисперсная система, дисперсной средой которой является водная фаза, дисперсионной фазой - минеральные соли, лактоза, белки, фосфат кальция и жир.

Под влиянием различных технологических факторов происходят изменения как состава, так и свойств составных частей молока. Высокая пищевая ценность молока обусловлена оптимальным содержанием в нем белков (2,9…3,5%), жиров (3,5…6%), углеводов (5%), минеральных солей и витаминов, а так же практически идеальным их соотношением. Отдельно нужно выделить биологическую ценность белков молока, которые отличаются сбалансированностью незаменимых аминокислот, их хорошим перевариванием и усвояемостью организмом. Аминокислотный скор коровьего молока составляет 95%. Белки особенно богаты лизином и треонином, лимитированными являются метионин и цистин.

В настоящее время в молоке выделяют две группы белков, которые имеют различные свойства: казеин и сывороточные белки.

Казеин, на долю которого приходится 78…85% белков молока, находятся в виде коллоидных частиц или мицелл, тогда как сывороточные белки остаются в молочной сыворотке в растворенном состоянии.

Казеиновая фракция представлена α, β, γ, κ – казеинам, основные – α и β – составляют 85%.

Сывороточные белки:

β – лактоглобулин – 15…22%

α – лактоальбумин – 7…12%

Альбумин

Иммуноглобулин

Протеозо-пептоны.

Эти фракции отличаются молекулярной массой, изоэлектрической точкой, соотношением аминокислот, особенностями состава и строения.

Сывороточные белки простые (протеины), казеин – сложный белок, в его состав входит фосфорная кислота. Белки молока – это глобулярные белки, имеющие большую молекулярную массу.

Основной белок – казеин. Выделенный и очищенный казеин – это амфотерный порошок, который не растворяется в воде, растворяется в слабых растворах щелочей, кислот, не имеет вкуса, запаха, имеет белый цвет. Стойкость казеиновых мицелл в молоке обусловлена наличием гидратной оболочки вокруг нее. Казеин в молоке находится в виде кальций-фосфат-казеинового каомплекса, в котором главная роль принадлежит Са, который образует кальциевые мостики между казеинатами кальция.

Мицеллы казеина стойкие к нагреванию и механической обработке, стабильность их зависит от содержания растворенных солей кальция, химического состава казеина, активной кислотности.

В свежем молоке при рН 6,6 казеин имеет отрицательный заряд. В изоэлектрической точке рН 4,6…4,7 казеин электронейтральный, имеет наименьшую растворимость и коагулирует. На этом базируется принцип приготовления всех видов кисломолочной продукции.

Комплекс белков, который остается в сыворотке после выделения казеина, называют сывороточными. Различают два основных типа молочной сыворотки: сладкую, образующуюся при производтве сыров, и кислую, получаемую при осаждении творога и казеина. β – лактоглобулин в процессе нагревания молока до 85…100оС весь коагулирует, с солями кальция образует молочный камень. В нагретом молоке вместе с к-казеином образует комплексы и выпадает в осадок.

Тепловая денатурация сывороточных белков молока проявляется в снижении их растворимости, освобождении активных сульфгидрильных групп аминокислот. Казеин, в отличие от сывороточных белков, имеет значительно большую термостойкость, выдерживает нагрев до 150…160оС без явных признаков коагуляции. С повышением кислотности казеиновый комплекс коагулирует при более низких температурах. Молоко с кислотностью 55…60оТ сворачивается при комнатной температуре.

К функциональным свойствам молока необходимо отнести их способность эмульгировать жир, стабилизировать жировую эмульсию, повышать водосвязывающую и водопоглощающую способность, образовывать мелко-пористые пены.

 








Дата добавления: 2016-12-26; просмотров: 8105;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.