Этапы решения задачи на построение

 

Решение задачи на построение обычно включает четыре этапа:

анализ, построение, доказательство и исследование. Рассмотрим каж­дый из них в отдельности.

1. Анализ. На этом этапе осуществляется поиск решения задачи. Его конечная цель - установление последовательности, алгоритма, состоящего из основных или элементарных построений, приводящих к построению искомой фигуры. Как и решение геометрической задачи на вычисление и доказательство, поиск такого алгоритма сопровож­дается чертежом, иллюстрацией, помогающими установить связи и зависимости между данными и искомыми фигурами.

2. Построение. Этот этап решения представляет собой непосредст­венную реализацию на чертеже найденного алгоритма с помощью выбранных инструментов построения.

3. Доказательство. Его цель - доказательство того, что построен­ная на предыдущем этапе фигура действительно искомая, т.е. удовле­творяет всем поставленным в задаче условиям.

4. Исследование. Этот этап решения состоит в выяснении того, всег­да ли задача имеет решение; если не всегда, то при каких конкретных данных и сколько именно решений она имеет. При этом разными счи­таются решения, дающие неравные фигуры (или если и равные, то различно расположенные относительно фигуры, с которой связыва­лось построение).

Проиллюстрируем эти этапы на конкретном примере.

Задача. Построить параллелограмм по ос­нованию а, высоте h и одной из диагоналей d.

Согласно условию, данными являются отрез­ки, представляющие основание, высоту и диагональ параллелограмма (рис.). Все эти фигуры считаются уже построенными, и поэтому объяснение не требуется.

1. Анализ. Выполним чертеж-иллюстрацию, считая, что иско­мый параллелограмм АВСD уже построен (рис.). Отмечаем на чертеже данные элементы: ВС = а, ВН = h, DВ=d.

 

Устанавливаем связи и зависимости между элементами параллелограмма. От­мечаем, что противоположные стороны АВ и лежат на параллельных прямых, расстояние между которыми равно высоте h. Поэтому можно построить треугольник АВD и затем достроить его до параллело­грамма АВСD. Получим следующий алгоритм построения искомой фигуры:

1) Строим параллельные прямые МК и РQ на расстоянии h друг от друга.

2) На прямой МК откладываем отрезок АD = а.

3) Из точки D, как из центра, радиусом d проводим окружность и находим точку В ее пересечения с прямой РQ.

4) На луче ВQ откладываем отрезок ВС = а.

5) Строим отрезки АВ и СD.

2. Построение. Все этапы алгоритма построения выполняем циркулем и линейкой непосредственно на чертеже с использованием заданных элементов (рис. 157).

3. Доказательство. Рассмотрим четырехугольник АВСD. Его противоположные стороны АD и ВС параллельны, так как лежат на па­раллельных прямых МК и РQ. Эти же стороны равны по построению:

АD = ВС = а. Значит, АВСD - параллелограмм, у которого АD = а, ВD = d, а высота равна h, так как расстояние между параллельными прямыми МК и РQ равно h (по построению). Следовательно, АВСD -искомый параллелограмм.

4. Исследование. Проверим возможность построения паралле­лограмма АВСD непосредственно по шагам алгоритма построения.

1) Параллельные прямые МК и РQ на расстоянии h всегда можно построить, и притом единственным образом.

2) Построить отрезок АD = а на прямой МК также всегда можно, и притом единственным образом.

3) Окружность, проведенная из центра D радиусом d, будет иметь общие точки с прямой РQ только тогда, когда d ≥ h. Если d = h, то по­лучится одна общая точка В, если же d > h, то две общие точки В и В'.

5) Эти построения всегда однозначно выполнимы. Таким образом, решение возможно, если d ≥ h. Если d = h, то зада­ча имеет единственное решение, если же d > h, то два решения.

Упражнения

 

1. Постройте с помощью циркуля и линейки треугольник по из­вестным трем сторонам. Всегда ли такое построение возможно?

2. Даны отрезок р, два угла α и β. Всегда ли можно построить тре­угольник, у которого сторона равна р, а прилежащие к ней углы рав­ны α и β.

3. Постройте с помощью циркуля и линейки прямоугольник, у ко­торого известны его стороны а и в.

4. Пользуясь только циркулем и линейкой, постройте:

а) прямоугольник по диагонали и одной из сторон;

б) квадрат со стороной р;

в) квадрат, диагональ которого задана.

5. Сколько можно построить параллелограммов с вершинами в трех данных точках, не лежащих на одной прямой?

6. Постройте параллелограмм, если известны его диагонали и угол между ними.

7. Сколько параллелограммов можно построить, если известны две его соседние стороны? Ответ обоснуйте.

8. С помощью циркуля и линейки постройте ромб по:

а) известным диагоналям;

б) известной стороне и одному из углов при его вершине;

в) углу и диагонали, исходящей из вершины этого угла;

г) стороне и диагонали.

9. Постройте трапецию по основаниям и боковым сторонам.

10. По каким данным можно построить равнобедренный треуголь­ник? Во всех возможных случаях выполните построения.

3. Методы решения задач на построение: преобразования геометрических фигур на плоскости: центральная, осевая симметрии, гомотетия, движение.

Пусть на плоскости (в пространстве) задана фигура F. Поставим в соответствие каждой точке данной фигуры F единственную точку плоскости (пространства). Получим новую фигуру F'. В этом случае говорят, что фигура F' получена преобразованием фигуры F. При этом фигура F' является образом фигуры F для данного преобразования, а фигуры F – прообразом фигуры F'. Существует несколько видов преобразований: симметрия относительно точки (центральная симметрия), симметрия относительно прямой (осевая симметрия), симметрия относительно плоскости, гомотетия и др.

Симметрия относительно точки.Пусть О – фиксированная точка и Х – произвольная точка. Точка Х ' называется симметричной точке Х относительно точки О, если точки Х, О, Х' лежат на одной прямой и ОХ = О Х '. Точка, симметричная точке Х ', есть точка Х. Преобразование фигуры F в фигуру F', при котором каждая ее точка Х переходит в точку Х', симметричную Х относительно данной точки О, называется преобразованием симметрии относительно точки О.

Если преобразование симметрии относительно точки О переводит фигуру F в себя, то фигура называется центрально-симметричной относительно точки О, а точка О – ее центром симметрии. Примеры – параллелограмм, окружность, куб, сфера, параллелепипед.

Пусть m – фиксированная прямая и Х – произвольная точка. Точка Х ' называется симметричной точке Х относительно прямой m, если прямая ХХ' перпендикулярна прямой m и ОХ = О Х ', где точка О – точка пересечения прямых ХХ' и m. Точка, симметричная точке Х , лежащей на прямой m, есть сама точка Х. Точка, симметричная точке Х ', есть точка Х. Преобразование фигуры F в фигуру F', при котором каждая ее точка Х переходит в точку Х', симметричную Х относительно данной прямой m, называется преобразованием симметрии относительно прямой m. Прямая m называется осью симметрии.

Гомотетия. Пусть F – данная фигура и О – фиксированная точка. Проведем через произвольную точку Х фигуры F луч ОХ и отложим на нем отрезок ОХ', равный k∙ОХ, где k – положительное число. Преобразование фигуры F в фигуру F', при котором каждая ее точка Х переходит в такую точку Х', что ОХ = k∙ОХ', называется гомотетией относительно центра О, число k называется коэффициентом гомотетии. Фигуры F и F' называются гомотетичными.

Движение– преобразование фигуры F в фигуру F', при котором сохраняется расстояние между точками, т.е. движение переводит любые две точки Х и Y фигуры F в точки Х ' и Y' фигуры F' так, что ХY = Х 'Y'.

Преобразование симметрии относительно точки является движением (центральная симметрия).

Преобразование симметрии относительно прямой является движением(осевая симметрия).

Преобразование симметрии относительно плоскости является движением.

Основные выводы

Рассмотрев материал данного параграфа, выяснили, что построе­ние геометрических фигур с заданными свойствами при помощи цир­куля и линейки осуществляется по определенным правилам. Прежде всего, надо знать, какие построения можно выполнять с помощью линейки, не имеющей делений, и с помощью циркуля. Эти построения называют основными. Кроме того, надо уметь решать элементарные задачи на построение, т.е. уметь строить: отрезок, равный данному; угол, равный данному; середину отрезка; биссектрису угла; прямую, перпендикулярную данной прямой, и проходящую через данную точку.

Процесс решения более сложных задач на построение разбивается на 4 этапа и основывается на умении решать элементарные задачи.









Дата добавления: 2016-05-11; просмотров: 7535;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.008 сек.