Алгоритм исследования функции на экстремум.
1. Найти частные производные 1-го порядка.
2. Составить и решить систему уравнений для нахождения точки или точек возможного экстремума.
3. Найти частные производные 2-го порядка и вычислить их значения в точках экстремума.
4. Составить и вычислить для каждой точки
5. Сделать вывод о наличии экстремума.
Двойные интегралы
Рассмотрим на плоскости некоторую замкнутую кривую, уравнение которой f(x, y) = 0.
y
0 x
Совокупность всех точек, лежащих внутри кривой и на самой кривой назовем замкнутой областью D. Если выбрать точки области без учета точек, лежащих на кривой, область будет называется незамкнутой область D.
С геометрической точки зрения D - площадь фигуры, ограниченной контуром.
Разобьем область D на n частичных областей сеткой прямых, отстоящих друг от друга по оси х на расстояние Dхi, а по оси у – на Dуi. Вообще говоря, такой порядок разбиения не обязателен, возможно разбиение области на частичные участки произвольной формы и размера.
Получаем, что площадь S делится на элементарные прямоугольники, площади которых равны Si = Dxi × Dyi .
В каждой частичной области возьмем произвольную точку Р(хi, yi) и составим интегральную сумму
где f – функция непрерывная и однозначная для всех точек области D.
Если бесконечно увеличивать количество частичных областей Di, тогда, очевидно, площадь каждого частичного участка Si стремится к нулю.
Определение: Если при стремлении к нулю шага разбиения области D интегральные суммы имеют конечный предел, то этот предел называется двойным интеграломот функции f(x, y) по области D.
С учетом того, что Si = Dxi × Dyi получаем:
В приведенной выше записи имеются два знака S, т.к. суммирование производится по двум переменным х и у.
Т.к. деление области интегрирования произвольно, также произволен и выбор точек Рi, то, считая все площади Si одинаковыми, получаем формулу:
Дата добавления: 2016-06-24; просмотров: 1678;