Уравнения движения манипулятора с вращательными сочленениями

Конкретизация равенств (10-13) – (10-21) для шестизвенного манипулятора с вращательными сочленениями приводит к следующему виду членов уравнения, определяющих динамику движения манипулятора:

Матрица .Исходя из равенства (10-18), имеем:

, (10-22)

где

,, ,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

,

.

 

Вектор . Коэффициенты при обобщённых скоростях в выражениях (10-18), (10-19) для центробежных и кариолисовых сил можно сгруппировать в матрицы вида:

, . (10-23)

 

Пусть скорости изменения всех шести присоединенных переменных манипулятора характеризуются вектором :

. (10-24)

 

С учетом (10-23) и (10-24) равенство (10-19) можно представить в виде следующего произведения матриц и векторов:

. (10-25)

 

Здесь индекс i указывает номер сочленения ( ), в котором измеряются моменты и силы центробежного и кориолисового типа.

. (10-26)

 

Вектор гравитационных сил .Из равенства (10-21) имеем:

, (10-27)

где

,

,

,

,

,

.

Коэффициенты в выражениях (10-18) – (10-21) являются функциями как присоединенных переменных, так и динамических параметров манипулятора. Их называют динамическими коэффициентами манипулятора. Физический смысл динамических коэффициентов легко понять из уравнений (10-18) – (10-21), описывающих динамику движения манипулятора.

1. Коэффициенты , определяемые равенством (10-21), учитывают силу тяжести, действующую на каждое из звеньев манипулятора.

2. Коэффициенты , определяемые равенством (10-18), устанавливают связь действующих в сочленениях сил и моментов с ускорением присоединенных переменных. В частности, при i=k коэффициент связывает момент , действующий в i-м сочленении, с ускорением i-й присоединенный переменной. Если , то определяет момент (или силу), возникающий в i-м сочленении под действием ускорения в k-м сочленении. Поскольку матрица инерции симметрична и то .

3. Коэффициенты , определяемые равенствами (10-19) и (10-20), устанавливают связь действующих в сочленениях сил и моментов со скоростями изменения присоединенных переменных. Коэффициент определяет связь момента, возникающего в i-м сочленении в результате движения в k-м и m-м сочленениях, со скоростями изменения k-й и m-й присоединенных переменных. В соответствии с физическим смыслом .

При вычислении рассмотренных коэффициентов полезно знать, что некоторые из этих коэффициентов могут иметь нулевые значения по одной из следующих причин:

1. Конкретная кинематическая схема манипулятора может исключить динамическое взаимовлияние движений в некоторых парах сочленений (коэффициенты ).

2. Некоторые из коэффициентов присутствуют в формулах (9-20) и (10-19) чисто фиктивно, будучи нулевыми в соответствии с физическим смыслом. Например, коэффициент всегда равен нулю, так как центробежная сила, порожденная движением в i-м сочленении, на само i-е сочленение влияния не оказывает, хотя и влияет на другие сочленения, т.е. при .

3. Некоторые из динамических коэффициентов могут принимать нулевые значения в отдельные моменты времени при реализации определённых конфигураций манипулятора

 

 








Дата добавления: 2016-05-25; просмотров: 848;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.013 сек.