Ранговые коэффициенты связи

 

В анализе социально-экономических явлений часто приходится прибегать к различным условным оценкам с помощью рангов, а взаимосвязь между отдельными признаками измерять с помощью непараметрических коэффициентов связи.

Ранжирование - это процедура упорядочения объектов изучения, которая выполняется на основе предпочтения.

Ранг – это порядковый номер значений признака, расположенных в порядке возрастания или убывания величин. Если значения признака имеют одинаковую количественную оценку, то ранг всех этих значений принимается равным средней арифметической из соответствующих номеров мест. Данные ранги называются связными.

Наибольшее применение имеют ранговые коэффициенты Спирмена (r) и Кендалла (t). Этот коэффициент может быть использован для определения тесноты связи как между количественными, так и между качественными признаками.

 

Рассмотрим ранговый коэффициент Спирмена:

 

6 * å di2

rxy = 1 - ¾¾¾¾¾¾ ,

n (n2 - 1)

](11.6.1)

где di2 - квадраты разности рангов;

n - число наблюдений (число пар рангов).

 

Коэффициент Спирмена принимает любые значения в интервале [-1; 1].

 

 

Пример. По данным группам предприятий определить с помощью коэффициента Спирмена зависимость между величиной стоимости основных фондов и численностью работающих на предприятии.

 

№ предприятия Стоимость фондов (млн руб.) X Численность работников (чел.) Y Ранжирование Разность рангов di=Rx - Ry di2
Rx Ry
- 8
- 5
å

 

6 * 120 720

rxy = 1 - ¾¾¾¾¾ = 1 - ¾¾¾ = 0,3. Связь слабая.

10 * 99 990

 

 

Вопросы для самопроверки:

 

 

Ø Какие виды связи между явлениями вы знаете: а) по степени тесноты,
б) по направлению, в) по аналитическому выражению?

Ø В чем сущность корреляционной связи и ее отличие от функциональной?

Ø Какие методы применяются для установления связи между явлениями?

Ø Каковы задачи корреляционного анализа?

Ø В чем заключается регрессионный анализ?

Ø Что такое коэффициент корреляции? Условия его применения.

Ø Расскажите о простейших показателях тесноты связи объемных показателей.

Ø Индекс корреляции, когда он приближается к единице, нулю.

Ø Как определяются коэффициенты ассоциации и контингенции?

 

 

Заключение

 

 

В данном учебном пособии были рассмотрены приемы и способы сбора, обработки и анализа статистических данных. В то же время, необходимо отметить, что статистическое наблюдение не является обязательным этапом статистического исследования. Часто экономист-аналитик имеет дело с материалом, полученным из баз данных, бюллетеней информационных агенств, статистических сборников и других источников. В этом случае работа должна начинаться с проверки полноты и качества данных, их группировки, а при отсутствии необходимости в этих этапах – с расчета индивидуальных и обобщающих показателей.

Рассмотренные приемы и методы могут использоваться не только в практике статистического анализа. Статистическая методология исследования в настоящее время заняла прочные позиции во многих областях знания. Статистические формулы находят применение в макро- и микроэкономике, финансовом анализе, оценке бизнеса и недвижимости, анализе товарных и финансовых рынков.

Более того, обрабатываемый статистическими методами материал не обязательно должен относиться к экономической области. В большинстве случаев, описанные приемы и показатели будут эффективны при обобщении и анализе технической, демографической, социологической, биологической и медицинской информации.

Рассматриваемые в пособии методы в большинстве случаев иллюстрированы практическими примерами. Подобные вычисления не очень трудоемки для небольших совокупностей или коротких динамических рядов. При работе же с большими массивами статистической информации необходимо использовать прикладные программные обеспечения, ускоряющие и упрощающие все расчеты. Среди наиболее распространенных современных программных продуктов следует отметить пакеты STATISTIKA, SPSS, Мезозавр, ОЛИМП, САНИ, Эвриста и STATGRAPHICS.

 








Дата добавления: 2016-05-25; просмотров: 479;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.