Истечение жидкости через малое отверстие в тонкой стенке

 

Рассмотрим основные закономерности истечения жидкости из сосуда через малое отверстие в его стенке, которую будем считать тонкой. Предположим также, что площадь отверстия много меньше площади свободной поверхности жидкости в сосуде, вследствие чего скоростью опускания этой поверхности можно пренебречь, а само истечение считать установившимся.

Воспользуемся уравнением Бернулли, применив его к жидкости, расположенной между сечениями 1 - 1 и 2 – 2, рис. 10.1. Первое из них совпадает со свободной поверхностью жидкости, второе выбрано в том месте вытекающей струи, где она становится цилиндрической. Подчеркнем, что в цилиндрической части струи скорости жидкости считаются равными друг другу, а давление вдоль сечения остается постоянным, равным его значению на поверхности струи. Имеем:

 

(10.1)

 

Здесь давление на свободной поверхности жидкости в сосуде; давление в той среде, в которую происходит истечение.

Скорость жидкости на свободной поверхности, в силу сделанного предположения, пренебрежимо мала: ; скорость истечения в дальнейшем будем обозначать просто .

Потери напора связаны с диссипацией механической энергии за счет сил внутреннего вязкого трения во всем объеме жидкости в сосуде, а также с дополнительными местными потерями, возникающими в самом отверстии. Если пренебречь первыми из них, так как скорости жидкости в сосуде невелики, то можно записать в следующем виде:

 

(10.2)

 

где — коэффициент местного сопротивления отверстия, тогда

 

(10.3)

 

Введем в рассмотрение параметр , называемый коэффициентом скорости и определяемый равенством

 

, (10.4)

 

тогда равенство (10.3) можно переписать в следующем виде:

 

(10.5)

 

Формула служит для вычисления скорости истечения жидкости через малое отверстие при постоянном напоре. Коэффициент скорости , входящий в эту формулу, зависит от числа Рейнольдса, которое в данном случае можно определить формулой

 

 

в которой диаметр отверстия; кинематическая вязкость жидкости; напор в середине отверстия; характерная скорость. Однако эксперименты показывают, что при больших эта зависимость практически исчезает, и значение коэффициента становится постоянным, близким к единице:

 

;

 

В то же время для малых значений зависимость от необходимо учитывать.

Если , т.е. давление на свободной поверхности жидкости и давление в среде, в которую эта жидкость вытекает, равны друг другу, то формула (10.5) упрощается и приобретает вид:

 

. (10.6)

 

Если , то из (10.6) получается известная формула Торричелли:

 

, (10.7)

 

которая утверждает, что в рамках сделанных предположений скорость истечения жидкости из малого отверстия в сосуде равна скорости свободного падения материальной точки в пустоте с высоты .

Вычислим расход жидкости. Поскольку скорости частиц в цилиндрической части струи одинаковы, то расход жидкости рассчитывается по следующей формуле:

 

(10.8)

 

Если обозначить через коэффициент сжатия струи, то площадь сжатого сечения струи жидкости и площадь отверстия связаны: соотношением . Поэтому формула (10.8) может быть записана по-другому:

 

.

 

Произведение называют коэффициентом расхода и обозначают буквой :

 

 

Окончательно формула для расхода жидкости через малое отверстие принимает вид:

 

(10.9)

 

В общем случае коэффициент расхода, так же как и коэффициент скорости, зависит от режима истечения, определяемого числом Рейнольдса . При больших числах коэффициент расхода изменяется незначительно. Так, например, для воды, нефтепродуктов, газового конденсата, многих нефтей и других и не слишком вязких жидкостей . Для вычисления коэффициента расхода при проф. А.Д. Альтшуль предложил эмпирическую формулу

 

. (10.10)

 








Дата добавления: 2016-05-16; просмотров: 1590;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.013 сек.