Медиаторы и рецепторы центральной нервной системы
Медиатор (лат. mediator — посредник) — химическое вещество, с помощью которого сигнал передается от одной клетки к другой. В головном мозге к настоящему времени обнаружено около 30 БАВ (табл. 5).
Таблица 5. Основные медиаторы и нейропептиды ЦНС: место синтеза и физиологические эффекты
Вещество | Синтез и транспорт | Физиологическое действие |
Норадреналин (возбуждающий медиатор) | Ствол мозга, гипоталамус, ретикулярная формация, лимбическая система, симпатический отдел ВНС | Регуляция настроения, эмоциональные реакции, поддержание бодрствования, формирование сна, сновидений |
Дофамин (допамин) (возбуждающий, может оказывать тормозное действие) | Средний мозг, черная субстанция, лимбичесая система | Формирование чувства удовольствия, регуляция эмоциональных реакций, поддержание бодрствования |
Влияние на полосатое тело (бледный шар, скорлупа) базальных ганглиев | Участе в регуляции сложных движений | |
Серотонин (возбуждающий и тормозной медиатор) | Спинной мозг, ствол мозга (ядро шва), головной мозг, гипоталаму, таламус | Терморегуляция, формирование болевых ощущений, сенсорное восприятие, засыпание |
Ацетилхолин (возбуждающий медиатор) | Спинной и голвной мозг, ВНС | Возбуждающие влияние на эффекторы |
ГАМК (гамма-аминомасляная кислота) тормозной медиатор | Спинной и головной мозг | Сон, торможение в ЦНС |
Глицин (тормозной медиатор) | Спинной и головной мозг | Торможение в ЦНС |
Ангиотензин II | Ствол мозга, гипоталамус | Повышение давления, торможение синтеза катехоламинов, стимуляция синтеза гормонов, информирует ЦНС об осмотическом давлении крови |
Олигопептиды: | Лимбическая система, гипофиз, гипоталамус | Эмоциональные реакции, настроение, половое поведение |
1.Веществ Р | Передача болевого возбуждения от периферии в ЦНС, формирование болевых ощущений | |
2.Энкефалины, эдорфины | Антиболевые (обезболивающие) рекции головного мозга | |
3.Пептид, вызывающий дельта-сон | Повышение устойчивости к стрессу, сон | |
4.Гастрин | Информирует мозг о пищевой потребности | |
Простогландины | Кора больших полушарий, мозжечок | Формирование болевых ощущений, повышение свертываемости крови; регуляциятонуса гладких мышц; усиление физиологическог эффекта медиаторов и гормонов |
Моноспецифические белки | Различные отделы головного мозга | Влияние на процессы обучения, память, биоэлектрическую активность и химическую чувствительность нервных клеток |
Вещество, из которого образуется медиатор (предшественник медиатора), попадает в сому или аксон из крови и ликвора, в результате биохимических реакций под действием ферментов превращается в соответствующий медиатор, затем транспортируется в синаптические везикулы. Медиатор может синтезироваться в теле нейрона или его окончании. При передаче сигнала с нервного окончания на другую клетку медиатор высвобождается в синаптическую щель и действует на рецептор постсинаптической мембраны. Как отмечалось выше, по механизму реагирования на медиатор все эффекторные рецепторы подразделяют на ионотропные и метаботропные. Большинство ионотропных и метаботропных рецепторов связано с G-белками (ГТФ-связывающие белки).
При действии медиатора на ионотропные рецепторы открываются ионные каналы непосредственно с помощью G-белка, и вследствие движения ионов в клетку или из клетки формируются ВПСП или ТПСП. Ионотропные рецепторы называют также рецепторами быстрого ответа (например, N-холинорецептор, ГАМК1-, глицино-, 5-НТ3(S3)- серотонинорецепторы).
При действии медиатора на метаботропные рецепторы ионные каналы активируются через G-белок с помощью вторых посредников. Далее формируются ВПСП, ПД, ТПСП (электрофизиологические явления), с помощью которых запускаются биохимические (метаболические) процессы; при этом возбудимость нейрона и амплитуда ВПСП могут быть повышенными в течение секунд, минут, часов и даже дней. Вторые посредники могут также изменять активность ионных каналов.
Амины (дофамин, норадреналин, серотонин, гистамин) встречаются в разных отделах ЦНС, в значительных количествах — в нейронах ствола мозга. Амины обеспечивают возникновение процессов возбуждения и торможения, например, в промежуточном мозге, в черной субстанции, в лимбической системе, в полосатом теле.
Серотонин является возбуждающим и тормозным медиатором в нейронах ствола мозга, тормозным — в коре большого мозга. Известно семь типов серотонинорецепторов (5-НТ, Б-рецепторы), большинство из них метаботропные (вторые посредники — цАМ Ф и ИФ3/ДАГ). Ионотропным является S3-рецептор (имеется, в частности, в ганглиях ВНС). Серотонин содержится главным образом в структурах, имеющих отношение к регуляции вегетативных функций. Особенно много его в ядрах шва (ЯШ), лимбической системе. Аксоны этих нейронов проходят в бульбоспинальных путях и оканчиваются на нейронах различных сегментов спинного мозга. Здесь они контактируют с клетками преганглионарных симпатических нейронов и со вставочными нейронами желатинозной субстанции. Полагают, что часть этих симпатических нейронов (а может быть, и все) являются серотонинергическими нейронами ВНС. Их аксоны, согласно последним данным, идут к органам ЖКТ и оказывают мощное стимулирующее влияние на его моторику. Повышение уровня серотонина и норадреналина в нейронах ЦНС типично для маниакальных состояний, снижение — для депрессивных.
Норадреналин является возбуждающим медиатором в гипоталамусе, в ядрах эпиталамуса, тормозным — в клетках Пуркинье мозжечка. В ретикулярной формации (РФ) ствола мозга и гипоталамусе обнаружены α- и β-адренорецепторы. Норадренергические нейроны сконцентрированы в области голубого пятна (средний мозг), где их насчитывается всего несколько сотен, но ответвления их аксонов встречаются по всей ЦНС.
Дофамин является медиатором нейронов среднего мозга, гипоталамуса. Дофаминорецепторы подразделяют на Д1- и Д2-подтипы. Д1-рецепторы локализуются на клетках полосатого тела, действуют посредством дофаминчувствительной аденилатциклазы, как и Д2-рецепторы. Последние обнаружены в гипофизе.
При действии на них дофамина угнетаются синтез и секреция пролактина, окситоцина, меланоцитстимулирующего гормона, эндорфина. Д2-рецепторы найдены на нейронах полосатого тела, где их функция пока не очень ясна. Содержание дофамина в нейронах ЦНС повышено при шизофрении и снижено при паркинсонизме.
Гистамин реализует свое влияние с помощью вторых посредников (цАМФ и ИФ3/ДАГ). В значительной концентрации обнаружен в гипофизе и срединном возвышении гипоталамуса — здесь же локализовано основное количество гистаминергических нейронов. В остальных отделах ЦНС уровень гистамина очень низок. Медиаторная роль гистамина изучена мало. Выделяют Н1-, Н2- и Н3-гистаминорецепторы. Н1-рецепторы имеются в гипоталамусе и участвуют в регуляции потребления пищи, в терморегуляции, секреции пролактина и антидиуретического гормона (АДГ). Н2-рецепторы обнаружены на глиальных клетках.
Ацетилхолин встречается в коре большого мозга, в спинном мозге. Известен в основном как возбуждающий медиатор; в частности, является медиатором α-мотонейронов спинного мозга, иннервирующих скелетную мускулатуру. С помощью ацетилхолина α-мотонейроны по коллатералям своих аксонов передают возбуждающее влияние на тормозные клетки Реншоу; ацетилхолин имеется в РФ ствола мозга, в гипоталамусе. Обнаружены М- и N-холинорецепторы. Установлено семь типов М-холинорецепторов; основными являются и М1- и М2-рецепторы. М1-холинорецепторы локализуются на нейронах гиппокампа, полосатого тела, коры большого мозга, М2—холинорецепторы — на клетках мозжечка, ствола мозга. N-холинорецепторы довольно плотно расположены в области гипоталамуса и покрышки. Эти рецепторы изучены достаточно хорошо, они выделены с помощью α-бунгаротоксина (основной компонент яда ленточного крайта) и α-нейротоксина, содержащегося в яде кобры. При взаимодействии ацетилхолина с N-холинорецепторным белком последний изменяет свою конформацию, в результате чего открывается ионный канал. При взаимодействии ацетилхолина с М-холинорецептором активация ионных каналов (К+, Са2+) осуществляется с помощью вторых внутриклеточных посредников (цАМФ — циклический аденозинмонофосфат — для М2-рецептора; ИФ3/ДАГ — для М1рецептора).
Ацетилхолин активирует и тормозные нейроны с помощью М-холинорецепторов в глубоких слоях коры большого мозга, в стволе мозга, хвостатом ядре.
Аминокислоты. Глицин и γ-аминомасляная кислота (ГАМК) являются тормозными медиаторами в синапсах ЦНС и действуют на соответствующие рецепторы, глицин — в основном, в спинном мозге, ГАМК — в коре большого мозга, мозжечке, стволе мозга, спинном мозге. Передают возбуждающие влияния и действуют на соответствующие возбуждающие рецепторы α-глутамат и α-аспартат . Рецепторы глутаминовой и аспарагиновой аминокислот имеются на клетках спинного мозга, мозжечка, таламуса, гиппокампа, коры большого мозга. Глутамат — это основной возбуждающий медиатор ЦНС (75% возбуждающих синапсов мозга). Глутамат реализует свое влияние посредством метаботропных (связанных с активацией цАМФ и ИФ3/ДАГ) и ионотропных (связанных с К+-, Са2+-, Na+-ионным и каналами рецепторов).
Полипептиды встречаются в синапсах различных отделов ЦНС.
Энкефалины и эндорфины — опиоидные медиаторы нейронов, блокирующих, например, болевую импульсацию. Реализуют свое влияние посредством соответствующих опиатных рецепторов, которые особенно плотно располагаются на клетках лимбической системы; много их также на клетках черной субстанции, ядрах промежуточного мозга и солитарного тракта, имеются и на клетках голубого пятна, спинного мозга. Их лигандами являются (β-эндорфин, динорфин, лей- и метэнкефалины. Различные опиатные рецепторы обозначаются буквами греческого алфавита: α, ε, κ, μ, χ.
Вещество Р является медиатором нейронов, передающих сигналы боли. Особенно много этого полипептида содержится в дорсальных корешках спинного мозга. Это позволило предположить, что вещество Р может быть медиатором чувствительных нервных клеток в области их переключения на вставочные нейроны. Большое количество вещества Р содержится в гипоталамической области. Различают два вида рецепторов вещества Р: рецепторы типа 8Р-Е (Р1, расположенные на нейронах коры большого мозга, и рецепторы типа 8Р-Р (Р2), расположенные на нейронах мозговой перегородки.
Вазоинтестинальный пептид (ВИП), соматостатин, холецистокинин (ХЦК) также выполняют медиаторную функцию. ВИП-рецепторы и рецепторы к соматостатину выявлены на нейронах головного мозга. Рецепторы к ХЦК обнаружены на клетках коры большого мозга, хвостатого ядра, обонятельных луковиц. Действие ХЦК на рецепторы повышает проницаемость мембран для Са2+ посредством активации аденилатциклазной системы.
Ангиотензин участвует в передаче информации о потребности организма в воде. Рецепторы к ангиотензину обнаружены на нейронах коры большого мозга, среднего и промежуточного мозга. Связывание ангиотензина с рецепторами вызывает увеличение проницаемости клеточных мембран для Са2+. Эта реакция обусловлена процессами фосфорилирования мембранных белков вследствие активации аденилатциклазной системы и изменением синтеза простагландинов.
Люлиберин участвует в формировании половой потребности.
Пурины (АТФ, аденозин, АДФ) выполняют в основном моделирующую функцию. В частности, АТФ в спинном мозге выделяется вместе с ГАМК. Рецепторы к АТФ весьма разнообразны: Одни из них ионотропные, другие — метаботропные. АТФ и аденозин ограничивают перевозбуждение ЦНС и участвуют в формировании болевых ощущений.
Гипоталамические нейрогормоны, регулирующие функцию гипофиза, также выполняют медиаторную роль.
Физиологические эффекты действия некоторых медиаторов головного мозга. Дофамин участвует в формировании чувства удовольствия, в регуляции эмоциональных реакций, поддержании бодрствования. Дофамин полосатого тела регулирует сложные мышечные движения. Норадреналин регулирует настроение, эмоциональные реакции, обеспечивает поддержание бодрствования, участвует в механизмах формирования некоторых фаз сна, сновидений. Серотонин ускоряет процессы обучения, формирование болевых ощущений, сенсорное восприятие, засыпание. Эндорфины, энкефалины, пептид, дают антиболевые эффекты, повышают устойчивость к стрессу, способствуют сну. Простагландины вызывают повышение свертываемости крови, изменение тонуса гладких мышц, усиливают физиологические эффекты медиаторов и гормонов. Олигопептиды — медиаторы настроения, полового поведения, передачи ноцицептивного возбуждения от периферии к ЦНС, формирования болевых ощущений.
В последние годы получены факты, вызвавшие необходимость внесения коррективов в известный принцип Дейла. Так, согласно принципу Дейла, один нейрон синтезирует и использует один и тот же медиатор во всех разветвлениях своего аксона («один нейрон — один медиатор»). Однако выяснилось, что, кроме основного медиатора, в окончаниях аксона могут выделяться и другие, сопутствующие медиаторы (комедиаторы), играющие модулирующую роль или более медленно действующие. Кроме того, в тормозных нейронах в спинном мозге в большинстве случаев имеется два быстродействующих типичных медиатора в одном тормозном нейроне — ГАМК и глицин.
Таким образом, нейроны ЦНС возбуждаются или тормозятся, в основном, под влиянием специфических медиаторов.
Эффект действия медиатора зависит в основном от свойств ионных каналов постсинаптической мембраны и вторых посредников. Это явление особенно ярко демонстрируется при сравнении эффектов отдельных медиаторов в ЦНС и в периферических синапсах организма. Ацетилхолин, например, в коре мозга при микроаппликациях на разные нейроны может вызывать возбуждение и торможение, в синапсах сердца — только торможение, в синапсах гладкой мускулатуры ЖКТ — только возбуждение. Катехоламины тормозят сокращения желудка и кишечника, но стимулируют сердечную деятельность. Глутамат является только возбуждающим медиатором ЦНС.
Дата добавления: 2016-02-16; просмотров: 18428;