Раскисление стали при легировании
Такие раскислители, как марганец, кремний, алюминий, иногда вводят в сталь в количествах, значительно больших, чем требуется для раскисления. Это делается для получения стали с особыми свойствами, т. е. для выплавки высокомарганцовистой, высококремнистой и другой стали. В этих случаях процессы раскисления и легирования протекают одновременно. Кроме Mn, Si и А1 некоторые легирующие также обладают большим химическим сродством к кислороду, чем Fe, т. е. являются раскислителями. К таким легирующим элементам относятся Сг, V, Nb, В, Ti, Zr. Однако даже в тех случаях, когда раскислительная способность этих элементов невелика (Cr, V, Nb), они принимают участие в процессе раскисления и образования соответствующих продуктов раскисления, и это необходимо учитывать. Если требуется определить активность кислорода в стали, в которую введены различные раскислители и легирующие элементы, то нужно учесть влияние каждого компонента расплава.
Прямое легирование
Получение ферросплавов и лигатур является наиболее энерго-, трудо- и материалоемким производством в черной металлургии. При этом операции загрузки шихты, плавления и восстановления, разливки, грануляции, дробления, упаковки ферросплавов не только требуют больших затрат труда, но и сопровождаются потерями металла1 и интенсивным пылевыделением. При разработке технологических приемов получения легированных сталей приходится учитывать, с одной стороны, высокую температуру плавления ряда ферросплавов, а с другой —заметные колебания их плотности. В связи с этим металлурги ведут активный поиск путей создания технологий легирования, которые позволяли бы проводить прямое легирование из сырых материалов, минуя стадии производства ферросплавов. В ряде случаев такие пути уже найдены. В качестве сырых материалов, используемых для прямого легирования. Особенно велики потери марганца; общие потери марганца в процессе обогащения и выплавки марганцевых сплавов превышают 50%
применяют конвертерный ванадиевый шлак (18-19 % V2O2), молибденовый концентрат (82-90 % МоО3), хромовую руду (45-53 % Сr2О3), ниобиевый концентрат (38-43 % Nb2O3) и др. Эти материалы вводят в металл различными способами (на дно сталеразливочного ковша при выпуске, на шлак в печь, путем вдувания в глубь металла в печи или в ковше и т. п.). Материалы вводят обычно или в виде порошка, или в виде брикетов, в состав которых кроме основного материала вводят сильные восстановители (алюминий, кальций и т. п.), с тем чтобы в момент контакта материала с расплавленным металлом протекали реакции восстановления: например, 3V2O5 + 10А1=6[V]+5А12О3, МоО3+2А1=[Мо]+А12О3 и др.
Для таких элементов с относительно невысоким химическим сродством к кислороду, как Мn, Сг, некоторое повышение содержания легирующих может быть обеспечено путем взаимодействия смесей или шлаков с железом (в пределах, ограниченных константой равновесия). Например, для реакции
(MnO)+Fe=(FeO)+ [Mn]
т. e.
При введении в ванну марганецсодержащих добавок повышается и соответственно возрастает содержание марганца в металле. Сквозное извлечение ценных легирующих элементов при прямом легировании обычно выше, чем при использовании ферросплава. Недостатком метода являются нестабильность получаемых результатов, большие колебания степени восстановления в зависимости от условий выплавки, особенностей выпуска из агрегата данной плавки, количества и состава попавшего в ковш шлака и т. п. Однако этот недостаток практически исчезает по мере развития методов внепечной обработки, особенно методов, включающих предотвращение попадания конечного шлака в ковш, длительное перемешивание металла со шлаком, подогрев металла и шлака в процессе перемешивания и т. п.
Наиболее рационально в качестве восстановителя использовать углерод:
С + МnО = Мп + СО,
3С + Сr2О3 = 2Сr + 3СО,
3С + V3O3 = 2V + 3СО,
2С + NbO2 = Nb + 2CO,
5С + Nb2O5 = 2Nb + 5СО и т. д.
При наличии в ванне углерода обработка металла вакуумом или инертными газами сдвинет вправо равновесие реакции (МeО) + [С] = СОГ + [Me]:
На этом основано, например, прямое легирование металла хромом, ниобием и др. Учитывая высокую экономичность прямого легирования, металлурги изыскивают возможности использования всех материалов — отходов различных производств — в случае, если эти материалы содержат заметное количество ценных легирующих примесей.
В некоторых случаях для упрощения технологии и повышения степени использования ферросплавов применяют так называемые экзотермические смеси, экзотермические ферросплавы или экзотермические брикеты. В состав экзотермических смесей для изготовления брикетов входят обычно: порошок материала, содержащего лигатуру (порошок феррохрома, ферромарганца, ферровольфрама и т. п.); руда (марганцевая, хромовая и т. п.); связующие добавки (например, жидкое стекло), а также небольшие количества сильного восстановителя (например, порошка алюминия) и сильного окислителя (например, натриевой селитры NaNO3).
Выделяемого при взаимодействии экзотермических смесей тепла достаточно не только для быстрого расплавления материала, но и для компенсации затрат тепла на восстановление входящих в состав смеси оксидов. Эффективность применения экзотермических ферросплавов определяется некоторым снижением расхода ферросплавов и дополнительным восстановлением компонентов из руд. При этом, однако, приходится учитывать дополнительные затраты на дробление, смешение, брикетирование, а также на хранение взрывоопасных окислителей. Обычно экзотермические ферросплавы применяют на агрегатах небольшой емкости при обработке небольших масс металла.
Глоссарии
Раскисление металлов – процесс удаления из расплавленных металлов (главным образом стали и др. сплавов на основе железа) растворённого в них кислорода, который является вредной примесью, ухудшающей механические свойства металла. Для Р. м. применяют элементы (или их сплавы, например Ферросплавы), характеризующиеся большим сродством к кислороду, чем основной металл. Так, сталь раскисляют алюминием, который образует весьма прочный окисел Al2O3, выделяющийся в жидком металле в виде отдельной твёрдой фазы. Степень раскисления, т. е. конечное содержание кислорода в металле [О]. например при реакции R + О = RO (T), где R и О — раскислитель и кислород в металлическом растворе, определяется концентрацией раскислителя [R], температурой и прочностью окисла RO.
Раскисление марганцем – Марганец является сравнительно слабым раскислителем. При 1600 градусах и концентрациях марганца 0,2 и 0,8 процентов жидкое железо содержит 0,15 и 0,1 процент кислорода. При введении марганца в сталь образуются продукты раскисления, состоящие из FeO и MnO. Концентрация MnO в шлаковом расплаве зависит от содержания марганца в металле и температуры.
Раскисление кремнием –Кремний – более сильный раскислитель, чем марганец. При малых содержаниях кремния в стали и высоком содержании кислорода продуктом раскисления является не чистый кремнезем, а силикаты различного состава.
Раскисление алюминием –Алюминий является очень сильным раскислителем и в связи с этим широко применяется в практике сталеварения для раскисления стали. Раскислительная способность алюминия экспериментально определялась многими исследователями. Трудности экспериментального изучения раскислительной способности алюминия связаны со сравнительно большой погрешностью определений малых концентраций кислорода и раскислителя в расплаве, а также низкого окислительного потенциала в газовой фазе.
Легирование (нем. legieren — «сплавлять», от лат. ligare — «связывать») — добавление в состав материалов примесей для изменения (улучшения) физических и химических свойств основного материала. Легирование является обобщающим понятием ряда технологических процедур, различают объемное (металлургическое) и поверхностное (ионное, диффузное и др.) легирование.
Дата добавления: 2016-04-22; просмотров: 1073;