Исследование формы параболы.

Так как ордината в каноническое уравнение параболы входит во второй степени, то ось является осью симметрии параболы .

Определение. Точка пересечения параболы с её осью симметрии называется вершиной параболы. Парабола (1) имеет только одну вершину .

Из уравнения следует, что (т.к. , а ). Разрешая уравнение относительно и беря для лишь неотрицательное значение , видим, что в полуинтервале - возрастающая функция , причём .

Всякая прямая пересекает параболу не более чем в двух точках (т.к. прямая определяется уравнением первой степени, а парабола - второй. Проведённое исследование даёт представление о форме параболы (См. рис. 177).

Рис. 177

Замечание. Уравнение , где сводится к уравнению заменой на , т.е. путём преобразования системы координат, которое соответствует изменению положительного направления оси на противоположное.

Отсюда следует, что парабола симметрична с параболой относительно оси (См. рис.178). Аналогичными рассуждениями устанавливаем, что каждое из уравнений: ; (2) где определяет параболу с вершиной в начале координат и осью симметрии (См. рис. 179, 180).

Рис. 179

Уравнение (2) пишут часто в виде, разрешённом относительно ординаты : , где ; ( ).








Дата добавления: 2016-04-14; просмотров: 1156;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.