Структурная индукция
Рекурсивные программы обычно строятся по следующей схеме: сначала в них явно определяется способ вычисления результата для наипростейших значений аргументов рекурсивной функции, затем способ вычисления результата для аргументов более сложного вида, причем используется сведение к вычислениям с данными более простого вида (с аргументами рекурсивного обращения к той же функции). Таким образом, вполне естественно попытаться доказать правильность таких программ следующим образом:
1) доказать, что программа работает правильно для простейших данных (аргументов функции);
2) доказать, что программа работает правильно для более сложных данных (аргументов функции) в предположении, что она работает правильно для более простых данных (аргументов функции).
Такой способ доказательства правильности для рекурсивных функций естествен, поскольку он следует основной схеме вычислений в рекурсивных программах. Студенты уже, конечно, обратили внимание на то, что этапы 1 и 2 фактически являются этапами доказательства с помощью индукции, но индукция осуществляется «по структуре» данных, которые обрабатывает программа. В частности, если можно сопоставить интуитивное понятие более простых данных (допустимых аргументов функции) и более сложных с отношением во вполне упорядоченном множестве значений данных (допустимых аргументов функции), то этапы 1 и 2 будут аналогичны этапам доказательства правильности работы программы для всех допустимых аргументов с помощью метода обобщенной индукции. Предложенный выше способ доказательства правильности назовем доказательством с помощью структурной индукции. Проиллюстрируем этот метод на нескольких очень простых рекурсивных программах.
Пример 4.6. Докажем правильность программы (разд. 4.1, пример 4.1):
F(Х) º IF X = 1 ТНЕN 1
ЕLSЕ ОТНЕRWISЕ X•F(Х – 1)
Предполагается, что эта функция вычисляет факториал от аргумента. Нужно доказать, что F(М) = 1 • 2 • 3 • ... • N = N! для любого положительного числа N. При доказательстве с помощью структурной индукции используем простую индукцию по положительным целым числам:
1) докажем, что F(1)= 1!. Действительно, F(1)= 1=1!;
2) докажем (для любого положительного числа N), что если
F(М) = 1 • 2 • ... • N = N!, то F(N + 1) = 1 • 2 • ... • N • (N + 1) = (N + 1)!. Следовательно, мы предполагаем, что N – положительное число, а F(N) = N! – гипотеза индукции. Так как N положительное число, то проверка N + 1 = 1 дает отрицательный ответ, и, прослеживая далее последовательность вычислений, получаем
F(N + 1) = (N + 1) • F((N + 1) – 1) = (N + 1) • F(N) =
= (N +1) • (N!) = (N +1) • (1 • 2 • ... • N) = 1 • 2 • ... • N • (N +1) = (N +1)!
(По гипотезе индукции)
что и требовалось доказать, т. е. F(N) = N! для любого положительного числа N.
Пример 4.7. Докажем правильность программы (разд. 4.1, пример 4.4):
МЕМВЕR (Х, L) º IF L = NIL THEN FALSЕ
ЕLSЕ IF Х = CAR(L) ТНЕN TRUE
ЕLSЕ ОТНЕRWISЕ МЕМВЕR (X, CDR(L))
Эта программа применима для любого элемента X и любого списка L. Предполагается, что она дает значение ТRUЕ, если X входит в качестве элемента верхнего уровня в список L; в противном же случае она дает значение FALSЕ:
МЕМВЕR (Х, L¢) = TRUE, если X элемент списка L¢
= FALSЕ в других случаях.
Для доказательства правильности работы этой программы используем структурную индукцию. Анализ программы показывает, что при рекурсивном обращении к МЕМВЕR из третьей строки программы только второй аргумент обращения выглядит проще, чем ранее. Таким образом, естественно вести индукцию только по второму аргументу функции. При рекурсивном обращении к МЕМВЕR ее второй аргумент CDR (L) представляет собой список, который содержит на один элемент (на верхнем уровне) меньше, чем список L. Следовательно, в структурной индукции можно использовать простую индукцию по числу элементов в списке L. Так как это число всегда неотрицательно, то доказательство основывается на простой индукции по неотрицательным целым числам. Итак, нужно:
1) доказать, что для любого списка, содержащего нуль элементов, МЕМВЕR работает правильно. Поскольку список, имеющий нуль элементов, это просто пустой список NIL, то очевидно, что МЕМВЕR (Х, NIL) = FALSЕ, так как X не есть элемент списка NIL;
2) доказать (для любого целого числа N), что если программа МЕМВЕR правильно работает для всех списков L¢, содержащих N элементов (на верхнем уровне), то она будет правильно работать и для всех списков L, содержащих на верхнем уровне (N + 1) элементов. Поэтому предположим, что МЕМВЕR правильно работает для списков L¢ длиной N, т.е.
МЕМВЕR (Х, L¢) = TRUE если X есть элемент из L¢,
= FALSЕ в других случаях.
Это гипотеза индукции. Предположим, что L есть список, содержащий (N + 1) элементов. Поскольку (N + 1) ³ 1, то L ¹ NIL. Прослеживая выполнение функции, видим, что
МЕМВЕR (Х, L) = TRUE если X = CAR (L),
= МЕМВЕR (Х, CDR (L)) в других случаях.
Если X = CAR(L) (а мы знаем, что CAR(L) определено, так как L¹NIL), то X – элемент списка L, и, следовательно, значение TRUЕ есть именно то значение, которое требуется. Если Х ¹ CAR (L), то X будет элементом списка L, если и только если X будет элементом CDR (L). (Функция CDR (L) определена, так как L ¹ NIL.) Однако CDR (L) представляет собой список из N элементов, и по гипотезе индукции следует, что МЕМВЕR (Х, СDR (L)) будет правильно вычислять значение TRUE или FALSЕ в зависимости от того, является ли X элементом CDR (L) или нет. Таким образом, если Х ¹ CDR (L), то МЕМВЕR (Х, L) = МЕМВЕR (Х, CDR (L)), а последняя функция вычисляет значение либо TRUЕ, либо FALSЕ в зависимости от того, будет ли X элементом CDR (L), а следовательно, элементом списка L или нет, что и требовалось доказать.
Дата добавления: 2016-04-11; просмотров: 939;