Коэффициент ранговой корреляции rs Спирмена

Назначение рангового коэффициента корреляции

Метод ранговой корреляции Спирмена позволяет определить тес­ноту (силу) и направление корреляционной связи между двумя призна­ками или двумя профилями {иерархиями) признаков.

Описание метода

Для подсчета ранговой корреляции необходимо располагать двумя рядами значений, которые могут быть проранжированы. Такими рядами значений могут быть:

1) два признака, измеренные в одной и той же группе испытуемых;

2) две индивидуальные иерархии признаков, выявленные у двух испы­туемых по одному и тому же набору признаков (например, личност­ные профили по 16-факторному опроснику Р. Б. Кеттелла, иерархии ценностей по методике Р. Рокича, последовательности предпочтений в выборе из нескольких альтернатив и др.);

3) две групповые иерархии признаков;

4) индивидуальная и групповая иерархии признаков.

Вначале показатели ранжируются отдельно по каждому из признаков. Как правило, меньшему значению признака начисляется меньший ранг.

Рассмотрим случай 1 (два признака). Здесь ранжируются ин­дивидуальные значения по первому признаку, полученные разными ис­пытуемыми, а затем индивидуальные значения по второму признаку.

Если два признака связаны положительно, то испытуемые, имею­щие низкие ранги по одному из них, будут иметь низкие ранги и по другому, а испытуемые, имеющие высокие ранги по одному из призна­ков, будут иметь по другому признаку также высокие ранги. Для под­счета rs необходимо определить разности (d) между рангами, получен­ными данным испытуемым по обоим признакам. Затем эти показатели d определенным образом преобразуются и вычитаются из 1. Чем меньше разности между рангами, тем больше будет rs, тем ближе он будет к +1.

Если корреляция отсутствует, то все ранги будут перемешаны и между ними не будет никакого соответствия. Формула составлена так, что вэтом случае rs, окажется близким к 0.

В случае отрицательной корреляции низким рангам испытуемых по одному признаку будут соответствовать высокие ранги по другому признаку, и наоборот.

Чем больше несовпадение между рангами испытуемых по двумя переменным, тем ближе rs к -1.

Рассмотрим случай 2 (два индивидуальных профиля). Здесь ранжируются индивидуальные значения, полученные каждым из 2-х испытуемым по определенному (одинаковому для них обоих) набору признаков. Первый ранг получит признак с самым низким значением; второй ранг - признак с более высоким значением и т.д. Очевидно, что все признаки должны быть измерены в одних и тех же единицах, иначе ранжирование невозможно. Например, невозможно проранжировать показатели по личностному опроснику Кеттелла (16PF), если они вы­ражены в "сырых" баллах, поскольку по разным факторам диапазоны значений различны: от 0 до 13, от 0 до 20 и от 0 до 26. Мы не мо­жем сказать, какой из факторов будет занимать первое место по выра­женности, пока не приведем все значения к единой шкале (чаще всего это шкала стенов).

Если индивидуальные иерархии двух испытуемых связаны поло­жительно, то признаки, имеющие низкие ранги у одного из них, будут иметь низкие ранги и у другого, и наоборот. Например, если у одного испытуемого фактор Е (доминантность) имеет самый низкий ранг, то иу другого испытуемого он должен иметь низкий ранг, если у одного испытуемого фактор С (эмоциональная устойчивость) имеет высший ранг, то и другой испытуемый должен иметь по этому фактору высокий ранг и т.д.

Рассмотрим случай 3 (два групповых профиля). Здесь ранжи­руются среднегрупповые значения, полученные в 2-х группах испытуе­мых по определенному, одинаковому для двух групп, набору признаков. В дальнейшем линия рассуждений такая же, как и в предыдущих двух случаях.

Рассмотрим случай 4 (индивидуальный и групповой профили). Здесь ранжируются отдельно индивидуальные значения испытуемого исреднегрупповые значения по тому же набору признаков, которые полу­чены, как правило, при исключении этого отдельного испытуемого - он не участвует в среднегрупповом профиле, с которым будет сопоставляться его индивидуальный профиль. Ранговая корреляция позволит проверить, насколько согласованы индивидуальный и групповой профили.

Во всех четырех случаях значимость полученного коэффициента корреляции определяется по количеству ранжированных значений N. В первом случае это количество будет совпадать с объемом выборки п. Во втором случае количеством наблюдений будет количество признаков, составляющих иерархию. В третьем и четвертом случае N - это также количество сопоставляемых признаков, а не количество испытуемых в группах. Подробные пояснения даны в примерах.

Если абсолютная величина rs достигает критического значения или превышает его, корреляция достоверна.

Гипотезы

Возможны два варианта гипотез. Первый относится к случаю 1, второй - к трем остальным случаям.

Первый вариант гипотез

H0: Корреляция между переменными А и Б не отличается от нуля.

H1: Корреляция между переменными А и Б достоверно отличается от нуля.

Второй вариант гипотез

H0: Корреляция между иерархиями А и Б не отличается от нуля.

H1:Корреляция между иерархиями А и Б достоверно отличается от нуля.








Дата добавления: 2016-04-06; просмотров: 778;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.