Механизмы канальцевой реабсорбции
Обратное всасывание различных веществ в канальцах обеспечивается активным и пассивным транспортом. Если вещество реабсорбируется против электрохимического и концентрационного градиента, процесс называется активным транспортом. Различают два вида активного транспорта — первично-активный и вторично-активный. Первично-активным транспорт называется в том случае, когда происходит перенос вещества против электрохимического градиента за счет энергии клеточного метаболизма. Наиболее ярким примером является транспорт ионов Nа+, который происходит при участии фермента На4", К^-АТФ-азы, использующей энергию АТФ. Вторично-активным называется перенос вещества против концентрационного градиента, но без затраты энергии клетки непосредственно на этот процесс. С помощью такого механизма реабсорбируются глюкоза, аминокислоты. Из просвета канальца эти органические вещества входят в клетку стенки проксимального канальца с помощью специального переносчика, который обязательно должен присоединить ион Ма^ Этот комплекс (переносчик + органическое вещество + ион Nа+) перемещается в мембране щеточной каймы и внутри клетки диссонирует. Фактором переноса этих веществ через апикальную плазматическую мембрану служит меньшая по сравнению с просветом канальца концентрация натрия в цитоплазме клетки, связанная с непрестанным активным выведением натрия из клетки с помощью Ма+, К^-АТФ-азы.
Реабсорбция воды, углекислого газа, некоторых ионов, мочевины происходит по механизму пассивного транспорта. Он характеризуется тем, что перенос вещества происходит по электрохимическому, концентрационному или осмотическому градиенту. Примером пассивного транспорта является реабсорбция в дистальном извитом канальце ионов С1~ по электрохимическому градиенту, создаваемому активным транспортом ионов Ма4". По осмотическому градиенту транспортируется лишь вода, скорость ее всасывания зависит от осмотической проницаемости стенки канальца и разности концентрации осмотически активных веществ по обеим сторонам ее стенки.
Вследствие всасывания воды и растворенных в ней веществ в содержимом проксимального канальца растет концентрация мочевины, небольшие количества которой по концентрационному градиенту реабсорбируются в кровь.
Достижения в области молекулярной биологии позволили проникнуть в сущность некоторых клеточных механизмов, обеспечивающих транспорт веществ через стенку канальца. Свойства клеток отделов нефрона различны. Неодинаковы и свойства ци-топлазматической мембраны в одной и той же клетке. Апикальная мембрана, обращен--ная в просвет канальца, имеет иные характеристики, чем базальная и боковые мембраны клетки, омываемые межклеточной жидкостью и соприкасающиеся с кровеносным капилляром. Вследствие этого апикальная и базальная плазматические мембраны участвуют в транспорте веществ по-разному.
Рассмотрим клеточные механизмы реабсорбции ионов на примере натрия. При введении одного из микроэлектродов в просвет канальца, а второго — в околоканальцевую жидкость было найдено, что разность потенциалов стенки проксимального канальца оказалась небольшой (около 1,3 мВ), в дистальном же канальце она высокая и может достигать 60 мВ. Концентрация натрия в крови выше, чем в цитоплазме клеток каналь-цев, поэтому реабсорбция натрия обусловлена активным транспортом — переносом его против градиента электрохимического потенциала. При реабсорбции натрий вначале входит в клетку эпителия канальца пассивно по натриевому каналу мембраны, обращенной в сторону просвета канальца. Внутренняя часть клетки заряжена отрицательно и поэтому положительно заряженный ион Nа+ входит в клетку по градиенту потенциала. Далее натрий движется в сторону базальной плазматической мембраны, в которой имеется ионная помпа. Обязательным компонентом натриевой помпы является Ма"^, К^ -АТФ-аза. Этот фермент обеспечивает транспорт натрия из клетки в кровь и одновременное поступление в клетку калия. Ионообменный натриево-калиевый механизм угнетается сердечными гликозидами, например уабаином.
Фильтруемая глюкоза практически полностью реабсорбируется клетками проксимального отдела канальца. В нормальных условиях за сутки с мочой выделяются незначительные ее количества (не более 130 мг). Процесс обратного всасывания глюкозы осуществляется против высокого концентрационного градиента. В апикальной мембране клеток проксимального канальца глюкоза соединяется с переносчиком, который должен одновременно присоединить ион Ма4'. В результате в цитоплазму клетки поступают и глюкоза, и натрий. Так как мембрана отличается высокой селективностью и односторонней проницаемостью, она не пропускает глюкозу обратно из клетки в просвет канальца. Следующий этап — перенос глюкозы из клетки в кровь через базальную плазматическую мембрану — носит характер облегченной диффузии.
Аминокислоты почти полностью реабсорбируются клетками проксимального канальца. Имеется не менее 4 механизмов транспорта аминокислот из просвета канальца в кровь: специальные системы реабсорбции для нейтральных, двуосновных, дикарбок-сильных аминокислот и иминокислот. Каждая из этих систем обеспечивает всасывание ряда аминокислот одной группы. Так, например, система реабсорбции двуосновных аминокислот участвует во всасывании лизина, аргинина, орнитина и, возможно, цистина. При введении в кровь избытка одной из указанных аминокислот начинается усиленная экскреция остальных аминокислот соответствующей группы. Системы транспорта отдельных групп аминокислот контролируются раздельными внутриклеточными генетическими механизмами. Описаны наследственные заболевания, одним из проявлений которых служит увеличенная экскреция определенных групп аминокислот (аминоацидурия).
Выделение с мочой слабых кислот и оснований зависит от их фильтрации в клубочках, реабсорбции и секреции в проксимальных канальцах, а также от «неионной диффузии», влияние которой особенно сказывается в дистальных канальцах и собирательных трубках. Эти соединения могут существовать в зависимости от рН среды в двух формах — неионизированной и ионизированной. Клеточные мембраны более проницаемы для неионизированных веществ. Многие слабые кислоты с большой скоростью экскретируются с щелочной мочой, а слабые основания, напротив—с кислой. Если. в канальцевой жидкости рН сдвинута в кислую сторону, основания ионизированы, они слабо реабсорбируются и преимущественно экскретируются с мочой. Никотин является слабым основанием, ионизированным на 50% при рН 8,1; он в 2—4 раза быстрее экскретируется с кислой (рН около 5), чем с более щелочной мочой (рН 7,8). Неионная диффузия влияет на выделение аммония, барбитуратов и др. веществ.
Небольшое количество профильтровавшегося в клубочках белка реабсорбируется клетками проксимальных канальцев. Выделение белков с мочой в норме составляет не более 20—75 мг в сутки. При заболеваниях почек оно может возрастать до 50 г в сутки. Выделение значительных количеств белка (протеинурия) может быть обусловлено либо нарушением реабсорбции, либо увеличением фильтрации белка.
В отличие от электролитов, глюкозы и аминокислот, которые, проникнув через апикальную мембрану, в неизменном виде достигают базальной плазматической мембраны и транспортируются в кровь, перенос белка обеспечивается принципиально иным механизмом. Белок попадает в клетку с помощью пиноцитоза. Молекулы профильтровавшегося белка абсорбируются на поверхностной мембране клетки с образованием, в конечном счете, пиноцитозной вакуоли. Эти вакуоли движутся в сторону базальной часчи клетки; в околоядерной области, где локализован пластинчатый комплекс (аппарат Гольджи), они могут сливаться с лизосомами, обладающими высокой активностью ряда протеолитических ферментов. В лизосомах захваченные молекулы белка при участии ферментов расщепляются и низкомолекулярные их фрагменты переносятся в кровь через базальную плазматическую мембрану. -Следует, однако, подчеркнуть, что не все белки в процессе транспорта подвергаются расщеплению, часть их попадает в кровь в неизменном виде.
Дата добавления: 2016-03-27; просмотров: 789;